
Computing Highly Occluded Paths Using a Sparse Network∗

Niel Lebeck
University of Washington

nl35@cs.washington.edu

Thomas Mølhave
SCALGO USA

thomas@scalgo.com

Pankaj K. Agarwal
Duke University

pankaj@cs.duke.edu

ABSTRACT
Computing paths over a terrain that are highly occluded
with respect to observers is an important problem in GIS.
Given a fast algorithm for computing the visibility map, the
path-planning step becomes the bottleneck. In this paper, we
present an approach for quickly computing occluded paths
over a terrain using a sparse network, a sparse 1-dimensional
network over the terrain. We present different strategies for
constructing the sparse network. Experimental results show
that our approach results in significantly improved time for
computing highly occluded paths between two query points,
and that the different strategies offer a tradeoff between
higher-quality paths and lower preprocessing times. Further-
more, there are strategies that achieve near-optimal paths
with small preprocessing cost.

Categories and Subject Descriptors: F.2.2 [Nonnumer-
ical Algorithms and Problems]: Geometrical problems and
computations; H.2.8 [Database Management]: Database Ap-
plications—Data Mining, Image Databases, Spatial Databases
and GIS

General Terms: Performance, Algorithms

Keywords: Terrain modeling, GIS, visibility, navigation

1. INTRODUCTION

Big terrain data sets are being collected and regularly up-
dated by federal, state, and local government agencies, as
∗Work by P.A. & N.L. is supported by NSF under grants CCF-
09-40671, CCF-10-12254, and CCF-11-61359, by Grant 2012/229
from the U.S.-Israel Binational Science Foundation, and by an
ERDC contract W9132V-11-C-0003. Work by P.A. & T.M. is
supported by U.S. Army Research Office contract W911NF-13-
P-0018. Part of the work was done while the first author was at
Duke University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SIGSPATIAL’14, November 04 - 07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3131-9/14/11. . . $15.00
http://dx.doi.org/10.1145/2666310.2666394

well as by private companies, at an unprecedented rate, and
the demand for these data sets is increasing. For example,
the US Geological Survey (USGS) produces the regularly
updated National Elevation Dataset (NED) which includes a
national 1/3-arc second (∼ 10 meter) digital elevation model
(DEM) as well as 1/9-arc second (∼ 3 meter) resolution
DEMs for parts of the U.S. where there is sufficient coverage.
But there is rising demand to map most of the US at 1/27-
arc second (∼ 1 meter) resolution, because bigger resolution
can make a big difference in terrain analysis. While such
high-resolution DEMs provide unprecedented opportunities,
their large size requires the availability of efficient algorithms
for terrain modeling and analysis, which is often the bot-
tleneck in taking full advantage of these applications. This
bottleneck is particularly apparent for path planning and
visibility analysis on terrains.

This paper considers a visibility-based path-planning problem.
Namely, the problem of computing a highly occluded path
between two points a and b on a terrain Σ with respect to
a set O of observers. This problem has a wide range of
applications, including military applications (e.g. planning
troop movements in enemy territory), city planning (e.g.
planning the location of visually unappealing construction
projects such as power lines), and virtual environments (e.g.
video games).

Computing highly occluded paths requires performing two
main operations on the terrain. Given a set O of observers,
first compute the visibility information of the observers
and aggregating this visibility information to compute the
coverage-map, which for each point on the terrain Σ tells
how visible it is from O. A minimal-cost path algorithm
is then run using the coverage-map. Both of these steps
are computationally expensive. In an earlier paper [14], we
presented an algorithm for quickly computing visibility infor-
mation in a manner that scales well to large terrains, using
approximation techniques and the GPU (see also [10]). Ex-
isting shortest-path algorithms such as Dijkstra’s algorithm
and A* that run over the entire terrain do not scale well,
and finding the shortest path becomes the bottleneck in the
occluded path computation. This step becomes even more
critical when we wish to perform repeated queries of finding
highly occluded paths on Σ, the scenario in which we are
interested. This raises the question whether highly-occluded-
path queries can be answered more quickly by performing
some preprocessing on the terrain.

In this paper, we answer this question affirmatively by de-
scribing an algorithm that preprocesses the coverage map,
extracts a sparse 1-dimensional network from the coverage
map, and uses this network for answering queries.

Related work. There is extensive work in computational
geometry, robotics, GIS, and virtual environment communi-
ties on path planning and visibility related problems. Here
we focus on the work that is most closely related to our
results. We refer the reader to the books [13, 20] for a review
of visibility based planning and related problems.

Most of the research on optimal path-planning on terrains
in computational geometry has focused on finding shortest
paths. The best known algorithm takes quadratic time [7] ,
and there are faster sampling based approximation algorithms
[21, 4]There is also some work on the so-called weighted-
region problem, where a weighted planar subdivision is given
and the goal is to find a path of the minimum weighted length.
The exact algorithms are quite expensive in 2D, but faster
approximation algorithms are known; see [3] and references
therein. One can assign the weights of a region based on
visibility of that region from a given set of observers and can
formulate the problem of computing a highly occluded path
as a weighted-region problem. However, this approach is not
scalable because the number of regions grow rapidly with
the size of the terrain and with the number of observers, and
the algorithm is impractical even for small-size terrains.

There is work in GIS and virtual environment communities on
finding paths that are occluded from a given set of observers
[11, 15, 16]. These algorithms sample a set of points on the
terrain or polygonal environment, assign a weight to each
point based on the visibility from a given set of observers, and
use a steepest-descent, A* search, or Dijkstra’s algorithm to
compute a desired path. However, many of these algorithms
do not seem to scale to large terrains. For example, the largest
terrains on which the algorithms in [15] were tested had size
257× 257. Franklin et. al [11] propose a terrain compression
algorithm and compute the paths on the compressed terrain.
They present experimental results on terrains of sizes up to
160, 000 (400×400) grid points. Ferreira et al. [10] presented a
scalable algorithm for computing viewsheds on large terrains,
but it does not study path-planning.

Motivated by on-line navigation systems, several algorithms
have been proposed for answering shortest-path queries on
road networks [1, 22]. Most of these algorithms rely on a
landmark based approach, i.e., it suffices to compute shortest
paths between a few landmarks. The shortest paths between
other pairs of nodes can be quickly computed by using the
pre-computed shortest paths and connecting the query points
to these paths locally. There is, however, relatively little
work on shortest path queries in a continuous space such
as a terrain. Agarwal et al. [2] presented a data structure
for computing an approximate shortest path between two
query points inside a polygonal region (possibly with holes).
There is no known data structure for answering shortest-path
queries on a terrain between two query points, with provable
guarantees on its performance, but there are data structures
for answering shortest-path queries on a terrain from a fixed
source point [2]. However, the size of the data structures is
at least linear in the size of the terrain.

Several approaches in robotics to the path planning problem
rely on constructing a 1-dimensional network: algorithms for
computing a shortest path in a planar domain constructs a
1D network such as the visibility graph or a spanner [13]. The
algorithms for computing a maximum clearance path, i.e., a
path that stays as far away from the boundary of the domain
as possible, construct the medial axis of the domain [17]. The
seminal path-planning algorithm by Canny [6] constructs
a 1-dimensional network using ideas from Morse Theory
and differential topology. Since then several path-planning
algorithms based on 1D networks have been proposed; see
e.g. the book [13]. A widely used approach for path planning
is the so-called probabilistic road map (PRM) approach [13],
which samples a set of random points and connects nearby
points by simple paths (e.g. line segments) that lie inside the
domain. It is worth pointing out that this line of work has not
focused on constructing a sparse network, but on constructing
a network that leads to good paths. Only recently has there
been some work on compressing these networks [19].

Finally we note that the approach of transforming a 2D or
3D domain to a 1D network has been used in other GIS
problems as well, e.g., hydrology analysis on terrains [8].

Our contributions. The main contribution of this paper
is to demonstrate that a 1D network based approach is effec-
tive for answering a highly-occluded-path query between two
points on a terrain. That is, we can construct a small size
1D network on the terrain that can be used to efficiently con-
struct a highly occluded path between any two query points.
The 1D network decomposes the terrain into regions. Given
two query points, we first connect them to the boundary
of the regions in which they lie and then compute a path
between these boundary points along the 1D network. As
mentioned above, such an approach has been effectively used
for shortest-path queries in a road network [1, 22], but we
are unaware of this approach being used for constructing a
highly occluded path on a terrain.

The paths computed using a sparse network are likely to
be high-quality if the sparse network closely aligns with the
lowest-cost subpaths over the terrain. On the other hand,
if the subpaths in the sparse network are relatively high-
cost, the sparse-network paths are likely to be expensive
as well. As a result, the algorithm used to construct the
sparse network is important. We propose and investigate
three strategies for constructing a 1D network:

(i) a learning based approach which computes highly oc-
cluded paths between a family of pairs of points and
uses them to construct the network.

(ii) a sampling based approach, a variant of the PRM ap-
proach mentioned above.

(iii) a topology based approach that traces one-dimensional
critical curves of the coverage map of the terrain.

These approaches provide a trade-off between the preprocess-
ing cost and the quality of the path. They are all based on
the coverage map of a terrain, which is computed using the
algorithm described in [14].

(a) (b) (c)

Figure 1. (a) The Afghanistan terrain, (b) the sum of the visibility maps for a set of observers O, and (c) the coverage map ωO with C = 1 and
α = 0.9. In (a), red shades indicate higher elevations, and in (b) and (c), lighter shades of blue indicate higher values.

We report detailed experimental results to evaluate the ef-
fectiveness of our approach. The learning based approach
produces a network that gives the highest-quality paths, but
with a high preprocessing cost. The topology based approach
generates a sparse network quickly, but the resulting paths
are relatively low quality. The sampling based approach
provides the best trade-off between path quality and prepro-
cessing time, with relatively fast network construction and
high-quality paths. The tradeoff between preprocessing time
and path quality for each of these strategies can be further
tuned by changing their parameters.

2. HIGHLY OCCLUDED PATHS

Let M ∈ R2 be a convex domain, typically a simple connected
region such as a rectangle or a disk, and let h : M→ R be a
height (elevation) function defined over M. The graph of h is
called a terrain, denoted by Σ, i.e., Σ = {(x, h(x)) | x ∈ M};
Σ is a two-dimensional surface embedded in R3. For a point
p ∈ M, we use p̂ = (p, h(p)) to denote the corresponding
point on Σ. For any two points a, b ∈ R3, a is visible from b,
and vice-versa, if no point on segment ab lies below Σ, i.e.,
for any q ∈ ab, with q = (q, z) where q ∈ M and z ∈ R, we
have z ≥ h(q). Otherwise a is occluded from b.

Let o ∈ R3 be an observer lying above Σ. We fix a parameter
rmax > 0. We assume that o has limited visibility in the
sense that no point farther than rmax away from o is visible
from o, and that the quality of visibility deteriorates with
distance. More precisely, we define the visibility of a point
p ∈ M, or rather p̂ ∈ Σ, as

Vo(p) =

{
1−min

{
‖p−o‖
rmax

, 1
}

if p̂ is visible from o,

0 otherwise.

That is, the visibility attenuates linearly with distance. One
can use another kernel function (e.g. Gaussian kernel) to
model the attenuation of visibility with distance. Further-
more, we assume that o is omnidirectional, i.e., it can see up
to distance rmax in all directions. One can choose a more so-
phisticated model in which the visibility attenuation depends
on the direction.

Let O = {o1, . . . , om} ⊆ R3 be a set of observers, each lying
above Σ. We define the coverage map ωO : M→ R≥0, with
respect to O, as

ωO(p) = C

(
1− α exp

(∑
oi∈O

Voi(p)

))
, (1)

where α ∈ [0, 1] and C > 0 are constants. Figure 2 illustrates
the form of this function. Note that our choice of function for
the coverage map gives decreasing marginal score increases
to additional observers. That is, visibility at p increasing
from 0 to 1 has much more impact than from 10 to 11, as the
latter point is already quite visible, so increase in visibility
has little impact. Figure 1 shows the relationship among
the terrain, the sum of the visibility maps, and the coverage
map.

C

(1− α)C

∑
oi∈O

Voi(p)

ω(p)

Figure 2. The functional form of the coverage map ω(p).

The cost of a path Π ∈ Σ is defined to be

ωO(Π) =

∫
Π

ωO(p) dp. (2)

Since the set O will be fixed and will not be important for
our discussion, we drop the subscript O from ω. So far we
have considered an arbitrary terrain. A widely used digital
elevation model (DEM) for a terrain is the so-called grid
DEM. That is, we have a parameter ρ > 0 and assume that
M is a square of side length ρ2L for some integer L ≥ 0. We
partition M into 2L × 2L grid cells, each of length ρ. For
each grid cell (i, j), 0 ≤ i, j < L, let qij denote its center.
Set Q = {qij | 0 ≤ i, j < 2L}. Construct a triangulation
of M by inserting edges between grid points. For a point
qij ∈ Q we insert edges to horizontally adjacent grid point
q(i+1)j , to vertically adjacent grid point qi(j+1), and to the

diagonally adjacent grid point q(i+1)(j+1). Let ∆(Q) denote
the resulting 2D triangulation.

The height function h specifies the height of all points in
Q. This is the grid DEM of the terrain. We can construct
a triangulated surface Σ over M by lifting each triangle
qi1j1qi2j2qi3j3 ∈ ∆(Q) to q̂i1j1 q̂i2j2 q̂i3j3 ; see Figure 3.

M

Σ

Q

h(p)

p

(a) (b)

Figure 3. (a) The terrain Σ corresponding to a grid Q. (b) The
triangulation ∆(Q) corresponding to the grid.

In a grid DEM, we consider paths along the edges of the grid
graph ∆(Q), or rather along the edges of Σ. We consider
the weighted graph G = (Q,E), where E is the set of edges
of ∆(Q). The weight of an edge (q1, q2) ∈ E, denoted by
w(q1, q2), is

w(q1, q2) =
ω(q1) + ω(q2)

2
‖q̂1 − q̂2‖,

which is a finite approximation of the integral in 2 over the
edge (q1, q2). Note that we consider the distance of the edge
(q̂1, q̂1) in Σ. The cost of a path Π = q0q1 . . . qk in G is defined
as

w(Π) =

k−1∑
i=0

w(qi, qi+1).

Given two grid points q, q′ ∈ Q, let Ω(q, q′) denote the
minimum-cost path in G (under the weight function w). We
refer to Ω(q, q′) as the most occluded path between q and q′

in G.

3. SPARSE NETWORKS

A sparse network S = (X,Γ) is a connected subgraph of the
grid graph G = (Q,E) with no degree one vertices in the
interior of M, which induces a planar decomposition of M.
The subgraph of G induced by Q \ X, i.e., removing the grid
points of X and all the edges of G incident on the nodes of
X, consists of a set of connected components. The grid cells
of M corresponding to each connected component is called a
face of S. For a grid point q ∈ Q \ X, let ϕq be the unique
face of S that contains q.

S can be used to compute low-cost paths between two grid
points q, q′ ∈ Q, by connecting q and q′ to S and then finding
a minimum-cost path in S. For two points a, b ∈ X, let
Ω̄S(a, b) denote the minimum-cost path in S. Recall that S

is connected, so a path between a and b exists. For a pair of
points a, b ∈ Q \ X, we define the path Ω̄S(a, b) as follows. If

(a) (b)

Figure 4. Two sparse networks and the paths between two points a
and b that they produce.

a and b lie in the same face of S, i.e., ϕa = ϕb, then Ω̄S(a, b)
is the minimum-cost path between a and b restricted to the
face ϕa. So assume that they lie in different faces of S. Let
ā (resp. b̄) denote the point in X closest to a (resp. b), i.e.,
ā = arg mina′∈X w(a, a′). For simplicity, let us assume that
ā and b̄ are uniquely defined. Note that ā (resp. b̄) lies on
the boundary of the face that contains a (resp. b). If a ∈ X,
then ā = a. We now define

Ω̄S(a, b) = ΩS(a, ā) ◦ Ω̄S(ā, b̄) ◦ ΩS(b̄, b).

We set w̄S(a, b) = w(Ω̄S(a, b)); See Figure 4. If the network S

is obvious from the context, we omit the subscript S.

The query procedure has two components: (i) computing
ā, b̄, Ω(a, ā), and Ω(b, b̄); and (ii) computing Ω̄(ā, b̄). For
very sparse networks the first term dominates, and as the
network becomes dense, the second term dominates, so from
the query-time point of view, one needs to construct S in
which the two terms are balanced.

We wish to construct a network S such that w̄(a, b) is close to
w(a, b). We note that this is trivially true in the two extreme
cases. Namely, if S is very sparse (say, empty in the extreme
case), then a and b are likely to lie in the same face of S and
so Ω̄(a, b) = Ω(a, b). On the other hand, if S is very dense
(say, G itself in the extreme case), then ā (resp. b̄) is very
close to a (resp. b) and w̄(ā, b̄) ≈ w(ā, b̄) ≈ w(a, b). However,
in either case the time spent in computing Ω̄(a, b) is roughly
the same as computing Ω(a, b) and thus constructing S does
not help.

Our goal is therefore to construct a network so that not only
is X small, but each face of S is also small, and for any
two points a, b ∈ X, w̄(a, b) is close to w(a, b). In the next
section, we describe a number of strategies to construct such
networks.

We remark that we could have used a more compact represen-
tation of S by removing all degree-two nodes. More precisely,
let X̃ ⊆ X be the set of nodes in S with degree more than
two. We can define S̃ = (X̃, Γ̃), where x, y ∈ S̃ are connected
by an edge if there is a path from x to y that does not pass
through any other node of S̃. Although this representation is
more compact, we decided not to use it because we have to
store S anyway to compute ϕa and ϕb and to reconstruct the
path Ω̄(a, b), and the saving in the overall query time does
not seem to be significant if we run Dijkstra’s algorithm on
S̃ as compared to running the A* algorithm on S ∪ ϕa ∪ ϕb.

4. CONSTRUCTING THENETWORK

This section describes three different approaches for con-
structing a sparse network on Σ, based on the coverage map,
with varying preprocessing costs and path quality. We as-
sume that the locations of the observers are known 1, and
that we have computed the coverage map ω : M→ R≥0 using
the algorithm in [14].

4.1 Learning based approach

This approach is motivated by the observation that for a
given coverage map, most occluded paths over a terrain tend
to follow similar or identical trajectories when moving over
the same region, even if the start and end points of the paths
are very different—only the initial and final protions of the
paths are different. As a result, we propose a learning based
approach to constructing the sparse network. It computes
highly occluded paths between many pairs of points and
builds a sparse network from the common sub-paths on these
paths. The initial path computation uses a shortest-path
algorithm over the entire terrain, resulting in an expensive
preprocessing step. The goal is, however, to construct a
sparse network that will speed up future queries. The al-
gorithm consists of three stages: The first stage computes
optimal paths between a family of pairs of points; the second
stage identifies the subpaths used by many paths; the third
stage completes these subpaths into a connected network;
see Figure 5.

First stage. We fix two parameters m and n. We choose a
set A = {a1, . . . , an} of n source points on the boundary of
the terrain Σ, i.e., on the edges of the square M. For each
i ≤ n, we choose a set Bi = {bi1, . . . , bim} of m destination
points, also on the boundary of Σ. For each i, we compute
the most occluded paths Ω(ai, bij) from ai to all bij , for
1 ≤ j ≤ m, using, say, Dijkstra’s algorithm. Let P be the
resulting set of mn paths.

Many different strategies can be used for choosing A and Bi’s,
but we use a simple random strategy to choose them. One
could have chosen mn different pairs of source-destination
points, but then the preprocessing cost would have been even
higher, and the current approach also does a better job of
identifying the shared structure of paths.

Second stage. We compute the heat-map µ : Q → R≥0

such that for a point q ∈ Q, µ(q) is the number of paths of
P passing through q; µ gives information about the common
sub-paths shared by the paths in P. Figure 5(a) shows a
small example of a heat-map.

Next, we fix a threshold t ≥ 0 and compute the thresholded
heat-map µt : Q→ {0, 1}, where for a grid point q ∈ µ,

µt(q) =

{
1 if µ(q) ≥ t,
0 otherwise.

(3)

1If the locations of observers are not known, we can guess their
locations, using an observer-placement algorithm, e.g., the one in
[14].

Let X1 ⊆ µ be the set of points q for which µt(q) is 1.
We construct an initial network S1 = (X1,Γ1), which is the
subgraph of the grid graph G induced by X1. See Figure 5(b).

Third stage. S1 gives the highest-intensity common sub-
paths, but S1 need not be a connected 1D network. We
therefore use postprocessing to convert S1 into a connected
1D network S with no degree one vertices in the interior of M.
First, the thresholded heat-map µt can have multiple dense
clusters of non-zero points resulting in trivially small faces
of S1, we delete these faces by contracting the edges on their
boundaries. S1 may have multiple connected components
C1, . . . , Ck. We connect them using a simple strategy that
finds the cheapest path Πij between any two components

(i∗, j∗) = arg min
1≤i 6=j≤k

{w(qi, qj) | qi ∈ Ci, qj ∈ Cj},

and connects Ci∗ , Cj∗ by adding the path Πij to the network.
We can then connect Ci and Cj along this path and iterate on
the resulting reduced set of connected components. Finally,
the network can contain dangling paths ending in degree-1
nodes. These paths can be removed, as they do not affect
connectivity. However, if a path ending in degree-1 node q
is long, it can be useful for the network. In such a case we
extend the path using a simple greedy algorithm. Let q′ be
the neighbor of q neighbor in S1. We extend the path from
q by adding the point

q∗ = arg max
p∈N(q)\q′

µ(p),

repeating the procedure on q∗ and continuing unless q∗ is a
point of X1 or a boundary point of M. This procedure may
result in degenerate “loops” where a sparse network path is
greedily extended back onto itself, so we detect and remove
such loops. Figure 5(c) shows the final sparse network. Let
S = (X,Γ) denote the final network.

4.2 Sampling based approach

The previous approach requires the computation of a large
number of minimum-cost paths, resulting in a high prepro-
cessing cost. We now describe an approach that involves
computing a much smaller number of paths between points
that are not too far away from each other.

We fix two parameters m and k. First, we choose a set P ⊆ Q
of m points; see below how P is chosen. Next, for each point
p ∈ P, we compute its k nearest neighbors in P \ {p}, using
the distance along Σ. Let N(p) denote this set of k points.
We then compute the path Ω(p, q) between p and each point
q ∈ N(p) using an A* algorithm. We add each point on
Ω(p, q) to the sparse network S (if it is not present already),
and add each edge (u, v) of the path to S. Finally, we find
the grid point xp (resp. yp) on a horizontal (resp. vertical)
edge of M that is closest to p. We add the paths Ω(p, xp) and
Ω(p, yp) to S as above. Figure 6 illustrates this procedure.

We now discuss different strategies for choosing the set P of
sample points.

Random. Select m random points of Q; each point is chosen
independently with uniform probability.

(a) (b) (c)

Figure 5. Constructing a sparse network from a heatmap: (a) The original heatmap; (b) the thresholded heatmap; (c) The sparse network.

(a)

p

(b) (c)

Figure 6. An illustration of sampling-based construction for k = 3.
(a) The set of points P. (b) Connecting point p to its k nearest
neighbors and two border points via most occluded paths. (c) The
full sparse network.

Even-low. Greedily select m grid points that have low
coverage-map values and are spaced apart. Given parameters
dh and dv, the minimum horizontal and vertical gap between
points, first select the point p1 with the lowest coverage-map
value. Then, for each subsequent choice i, select the point pi
which is the point more than dh distance away from each point
in {p1, . . . , pi−1} horizontally and more than dv distance away
from each point in {p1, . . . , pi−1} vertically with the lowest
coverage-map value. If no such point exists, set dh = dh/2
and dv = dv/2, and repeat. Then set P = {p1, . . . , pm}.

Random-low. For a parameter c ≤ 1
m

, randomly select m
grid points from among the 1/c points on Σ with the lowest
coverage-map values.

Remarks. (i): Note that sampling based strategies are
popular in e.g. robotics [12, 13] but they are commonly
applied slightly different. Instead of constructing the network
S like we do in our strategies, they construct an abstract
graph G = (V,E) with vertices corresponding to P and edges
(p, p′) corresponding to points p, p′ with weight set to the
cost of the path Ω(p, p′). We chose our approach for the
same reason as described at the end of Section 3.
(ii): We have proposed strategies that choose a set of random
points from a subset of points on Σ. If we had domain
knowledge, we could have used a deterministic strategy that
chooses a few “landmarks”, an approach commonly used for
path queries on road networks.

4.3 Topological approach

The objective of the topological approach is to construct a
sparse network that follows the boundaries of “valleys” of the
coverage map, i.e., the corridors of low-visibility cells which

are prime candidates for network edges.

For a vertex u in the grid graph G = (Q,E), let N+(u) denote
the set of “up” neighbors v of u with ω(v) > ω(u). We define
the ascending neighbor ↑(u) to be the up neighbor of u with
the highest value, i.e.,

↑(u) = arg max
v∈N+(u)

ω(v).

If N+(u) = ∅, ↑(u) is undefined. We define the ascent graph
A = (Q,E′) to be a subgraph of G, where E′ = {(u, v) |
v = ↑(u)}. Since all edges of A are directed from low to
high values in ω and each vertex has at most one outgoing
edge, the ascent graph A is a forest, with each maximum
of the coverage map being the root of a tree in this forest.
This forest partitions the vertices of Q and this induces a
subdivision of M. Intuitively, the boundary of the faces of this
subdivision forms the desired network. Formally, for a vertex
v ∈ Q, let Tv denote the tree of A that contains v. We call a
vertex v ∈ Q a boundary vertex if there is a neighbor u of v in
G such that Tu 6= Tv. We define the subgraph of G induced by
the boundary vertices as an initial network S1. Next, similar
to the learning approach, we perform a post-processing step
and produce the final network S. The post-processing step
removes dangling paths in S1 and also the faces with empty
interiors. The latter appear along the boundary vertices of
two “adjacent” trees, say, T1, T2, of A. We call a boundary
vertex of T2 redundant if it is adjacent only to the boundary
vertices of T1 or T2. We remove redundant boundary vertices
of T2 and the edges incident on them. We omit the details,
which are straightforward, from here.

Because of the high resolution of Q, the coverage map ω
is likely to contain many local maxima, implying that the
ascent graph contains many small regions corresponding to
insignificant features. Thus, we preprocess the coverage map
using the notion of topological persistence [9, 8], as extended
to volume [5], before computing the ascent graph. We remove
low-persistence features (features with low volume) and then
compute the ascent graph on the resulting simplified coverage
map.

Remarks. This strategy can also be applied to the terrain
Σ directly, with the intuition that valleys and low areas in
the terrain are often hidden from view; see the next section
for further discussion on this.

(a) (b) (c)

(d) (e) (f)

Figure 7. (a) The Afghanistan terrain. (b) The coverage map. (c) The learning network. (d) The sampling network. (e) The topology network.
(f) The topology-terrain network.

5. EXPERIMENTS

We present detailed experimental results to evaluate the effec-
tiveness of the sparse-network approach. First, we compare
the quality of the paths computed on different sparse net-
works with that of the optimal path, i.e., the optimal path
computed directly from the coverage map and terrain. Next,
we compare the preprocessing time of different strategies and
their path qualities. We also study how the path quality
changes as we increase the size of a network. Finally, we
compare the query time using a sparse network to that of
computing an optimal path on the coverage map.

Experimental setup. The experiments were performed on
a machine with an Intel Core i7-3770 CPU running at 3.40
GHz, 24GB of internal memory, and an NVIDIA GeForce
GTX 660 graphics card interfaced with OpenGL. The code
was written in C++.

We used two real terrain models in our experiments, each
provided by the US Army Topographic Engineering Center
(TEC). One dataset covers a roughly 4 × 8km2 region in
Afghanistan at a resolution of 2 meters. The terrain model
consists of about 7.1 million grid points with mostly moun-
tainous topology. It is a so-called Digital Surface Model
(DSM) and as such contains non-terrain features relevant
for visibility, such as trees and a few buildings. The second
data set is a larger, higher-resolution 1 meter grid covering
a 9× 9km2 region in Ft. Leonard Wood in Missouri. The
model consists of 81 million grid points with mostly rolling
hills and a prominent riverbed. It is a Digital Terrain Model
(DTM) containing only bare-earth elevation data.

We have implemented the three network-construction strate-
gies presented in Section 4, namely, the learning, sampling,
and topology strategies. For the sampling strategy, we chose
sample points randomly. In addition, we also implemented

●●●●
●
●●●●●
●
●
●●●●●●●●

●

●●●●●●●●
●●
●●●●●
●

●●●

●

●●●●●●●●●●●●●●

●

●
●●

●

●
●
●●●●●●

●
●
●●●●●

●
●●●●●●●●●●●●●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●
●
●●●●●●

●

●●●
●●
●

●
●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●
●
●●●●●●●

●

●●●
●●
●●●●●●

●

●●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

0

5

10

15

20

Le
ar

nin
g

Sam
pli

ng

Ran
do

m

To
po

log
y−

Te
rra

in

To
po

log
y

Grid

P
at

h
qu

al
ity

(a)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●

●

●
●●

●●●

●

●●●●
●●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●●●●

●

●

●
●
●

●

●

●

●

●●

●

2.5

5.0

7.5

Le
ar

nin
g

Sam
pli

ng

Ran
do

m

To
po

log
y−

Te
rra

in

To
po

log
y

Grid

P
at

h
qu

al
ity

(b)

●●

●
●

●

●

3

6

9

10 100 1000
Average preprocessing time (s)

P
at

h
qu

al
ity

●

●

●

●

●

●

Grid
Learning
Random
Sampling
Topology
Topology−Terrain

(c)

Figure 8. Boxplot showing the distributions of path-cost ratios (ρS) for each of the network construction strategies on (a) Afghanistan and
(b) Ft. Leonard Wood terrains. (c) Path-cost ratio plotted against preprocessing time for each of the network-construction strategies on the
Afghanistan terrain.

three strategies that do not use the coverage map, as a
baseline for comparison: (i) random: similar to the sam-
pling strategy, choose a set of m random grid points and
connect each of them to its k-nearest neighbors. Instead
of connecting two points by the most occluded path, this
approach connects the points with Euclidean shortest paths.
(ii) topology-terrain: applies the topological approach de-
scribed in Section 4.3 to the original terrain, instead of the
coverage map. (iii) grid : creates a network by partitioning
the terrain into a 10× 10 grid.

For each of the two terrain models, the coverage map, used
for computing and evaluating paths as well as for construct-
ing the sparse network, was formed by selecting the 25 best
observers for the terrain according to the persistence-based
observer selection algorithm described in [14] and using the
GPU based algorithm of the same paper. Linear attenuation
of visibility was used on each terrain, with a 2km maximum
visibility distance on the Afghanistan terrain and a 6.8km
maximum visibility distance on the Ft. Leonard Wood ter-
rain. We set C = 6 and α = 59/60 in (1), the functional
form of the coverage map.

To measure query time and path quality, we randomly choose
200 source and destination point pairs. For each pair, we
compute the paths using A*, which yields the optimal path
cost, as well as using a sparse network computed by each of
the strategies.

Network construction. Figure 7 shows the Afghanistan
terrain and its coverage map, as well as the networks resulting
from the learning, sampling, topology, and topology-terrain
strategies, overlaid on top of the coverage map. The compari-
son shows that the networks constructed by the learning and
the sampling strategies align with the regions of low visibility
in the coverage map. The topology network similarly has
edges in low-visibility areas, but it is a denser network than
the other two, particularly in the high-variance regions with
lots of trees in the upper-left portion of the terrain. The
topology-terrain network has several edges that run through
regions of high visibility, a byproduct of the fact that it is
not constructed using the coverage map.

Path quality. For two points a and b and a sparse-network
strategy S, the path-cost ratio is

ρS(a, b) =
w̄S(a, b)

w(a, b)
.

We use ρS to measure the quality of the paths computed by
S. Ideally, we want ρS to be as close to 1 as possible.

Figure 8 shows that the learning strategy gives the highest-
quality paths: on both terrains, the median path-cost ratio
is barely above 1, and the distribution is concentrated very
close to the median, indicating that the vast majority of
paths are very close to optimal. The sampling strategy
gives paths that are almost as good, with medians close to
1 and distributions concentrated below 1.5 on all terrains.
The topology strategy does not perform as well, with higher
medians and more spread.

The strategies that do not use the coverage map also fail
to return high-quality paths, with random, topology-terrain,
and grid strategies having distributions centered around much
higher medians and with far more spread. The fact that these
three strategies give much higher-cost paths indicates that
their ability to accurately capture low-visibility subpaths
suffers without access to the coverage map itself.

Preprocessing time. Figure 8(c) plots ρS against prepro-
cessing time for each of the strategies on the Afghanistan
terrain, with error bars indicating the standard deviation
of the path-cost ratio distribution. The learning strategy
requires much more time to construct the network than the
other strategies, due to the high number of paths it computes.
The preprocessing cost for the sampling strategy is much
lower, and even less for the topology strategies. Finally, the
grid strategy has an extremely low preprocessing time, due
to the fact that it involves very little computation. A similar
experiment on the Ft. Wood terrain showed trends similar
to those in Figure 8(c).

In general, there is an inverse relationship between prepro-
cessing time and path cost: strategies that have lower pre-
processing times have higher path costs.

1.075

1.100

1.125

1.150

1.175

1e+05 2e+05 3e+05
Network size (# vertices)

A
ve

ra
ge

 p
at

h−
co

st
 r

at
io

sampling

(a)

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0

25

50

75

0
30

00
60

00
90

00

Euclidean distance between points

Q
ue

ry
 s

pe
ed

up
(b)

10

20

30

40

1e+05 2e+05 3e+05
Network size

Q
ue

ry
 s

pe
ed

up

(c)

Figure 9. (a) Network size vs average path-cost ratios on the Afghanistan terrain. (b) Euclidean distance between points vs query speedup for
the sampling strategy on the Ft. Wood terrain. (c) Network size (number of vertices) vs average query speedup for the sampling strategy on the
Afghanistan terrain, for all paths in the experiment (solid line) and only the paths separating endpoints at least 8km away from each other
(dashed line).

Path quality vs network size. We now investigate the
relationship between network size and path quality.

We control the size of each network indirectly by controlling
certain parameters. For the learning strategy, we vary the
threshold t in the heat map (see (3)); for the sampling
strategy, we vary m, the number of sample points;2 for the
topology strategy, we vary the persistence threshold.

All networks exhibit a similar trade-off between path quality
and their size, so we focus on the sampling strategy. Fig-
ure 9(a) shows the (average) path quality as a function of
network size for the sampling strategy, averaged over four
runs. Generally, the path quality improves as the network
size increases unless the network size is so small that the
source and destination points lie in the same face for most
queries, in which case the algorithm computes an optimal
path (the initial portion of the curve in Figure 9(a)). We
also note that after a certain size, the marginal increase in
the path quality is very little.

Query time. The query time of all strategies was roughly
the same, so we focus on comparing the query time of the
sampling strategy with that of the A* algorithm, which runs
on the coverage map and the terrain. We define the query
speedup to be the query time of the A* algorithm divided
by that of the sampling strategy. The large the value, the
higher the speedup, and the better it is.

If two query points lie on the same face of a sparse network,
the query-processing algorithm reduces to A*, so the sparse-
network approach does not have any advantage over A* and
the query speedup is roughly 1.

The local planning time over the faces containing the source
and destination points remains essentially constant, so the
sparse-network query time increases very slowly as distance
increases between the query points, while A* query times

2In out experiments, as we increased m, we kept the old sample
points, so the set P in one network is the subset of another.

increase more dramatically. Figure 9(b) illustrates this trend,
plotting query-time ratio against Euclidean distance between
the endpoints of the path for the sampling strategy on the
Ft. Leonard Wood terrain. For one pair of points on the
graph only 87m apart, the sampling and A* query times are
approximately equal, while for a pair of points over 11km
apart, the sampling strategy provides an 87-fold speedup
over A*.

Sparse-network path computation gains an advantage over
A* as the sparse-network size increases as well, as shown
in Figure 9(c) for sampling networks on the Afghanistan
terrain. For a very small network with only a few large
faces, the majority of queries are between points on the same
face and reduce to A*. The learning network on the Ft.
Leonard Wood terrain is such a network. As the network size
increases, the faces in the network become smaller, speed-
ing up the local path-planning portions of the computation.
As the networks become extremely dense, however, query
times increase, decreasing the sparse network’s advantage
over A*; this trend can be observed in the rightmost portion
of the graph. Figure 9(c) also reinforces the previous obser-
vation that distance between points affects query times, as
for all network sizes, the average query-time ratio over only
paths between far-away points is consistently higher than
the average query-time over all paths.

6. DISCUSSION

In this paper we proposed a sparse-network based approach
for computing the highly occluded paths on a terrain, de-
veloped multiple strategies for constructing such a network,
and presented detailed experimental results to demonstrate
the effectiveness of this approach. Our results suggest that a
significant speed-up can be achieved by using this approach
instead of computing an optimal path on the coverage map.

We conclude by discussing a few open problems. An imme-
diate open question is whether the construction of a sparse
network can be expedited by parallelizing the algorithm, say,

using a GPU, especially since we use a GPU to construct
the coverage map. A more interesting question, however,
is to explore better strategies for constructing a sparse net-
work. Among the strategies presented in this paper, the
sampling strategy seems to provide the best trade-off be-
tween path quality and preprocessing time, but there are
several interesting directions to pursue.

We believe that a topology based algorithm can outperform
the sampling strategy, but one needs a better criterion than
the ascent graph to construct the network. There is some re-
cent work in machine learning on tracing “lower-dimensional”
critical curves (e.g. ridges) [18], which might lead to a more
effective topology based strategy for constructing a sparse
network. Furthermore, it will be useful to develop a hier-
archical or an incremental algorithm for constructing the
network, which starts with a very sparse network and then
locally refines the network as needed. This approach is likely
to provide a better trade-off between path quality and pre-
processing time. Another interesting direction is to develop
an effective strategy that does not require computing the
coverage map and works directly with the original terrain.
Our results show that a simple minded approach will not
work. An approach that effectively exploits the correlation
between visibility and the topology of terrain is needed. Fi-
nally, developing a sparse-network-construction algorithm
that comes with a provable guarantee on its worst-case per-
formance, both in terms of the path quality and the query
time, is another potential avenue for future work.

Acknowledgments.. The authors thank James Rogers
and Arnold Boedihardjo from the US Army ERDC-TEC for
providing us the two datasets that we used in this paper,
and the anonymous reviewers for their helpful comments.

References
[1] I. Abraham, D. Delling, A. V. Goldberg, and R. F. F.

Werneck, A hub-based labeling algorithm for shortest
paths in road networks, Proc. 10th Annu. Sympos. Ex-
perimental Algos., 2011, pp. 230–241.

[2] P. K. Agarwal, R. Sharathkumar, and H. Yu, Approx-
imate euclidean shortest paths amid convex obstacles,
Proc. 20th Annu. ACM-SIAM Sympos. Discrete Algos.,
2009, pp. 283–292.

[3] L. Aleksandrov, H. Djidjev, A. Maheshwari, and J.-
R. Sack, An approximation algorithm for computing
shortest paths in weighted 3-d domains, Discr. Comput.
Geom, 50 (2013), 124–184.

[4] L. Aleksandrov, A. Maheshwari, and J.-R. Sack, Approx-
imation algorithms for geometric shortest path problems,
Proc. 42nd Annu. ACM Sympos. Theory of Comput.,
2000, pp. 286–295.

[5] L. Arge and M. Revsbæk, I/o-efficient contour tree sim-
plification, in: Proc. 20th Annu. Sympos. Algos. Com-
put., 2009, pp. 1155–1165.

[6] J. F. Canny, A new algebraic method for robot motion
planning and real geometry, Proc. 28th Annu. IEEE
Sympos. Found. Comput. Sci., 1987, pp. 39–48.

[7] J. Chen and Y. Han, Shortest paths on a polyhedron,
Int. J. Comput. Geom. Appl., 6 (1996), 127–144.

[8] A. Danner, T. Mølhave, K. Yi, P. K. Agarwal, L. Arge,
and H. Mitasova, TerraStream: from elevation data to
watershed hierarchies, Proc. 15th Intl. Sympos. Geog.
Info. Sys., 2007, pp. 1–8.

[9] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topo-
logical persistence and simplification, Proc. 41st Annu.
IEEE Sympos. Found. Comput. Sci., 2000, pp. 454–463.

[10] C. R. Ferreira, S. V. G. Magalhães, M. V. A. Andrade,
W. R. Franklin, and A. M. Pompermayer, More efficient
terrain viewshed computation on massive datasets using
external memory, Proc. 20th Intl. Sympos. Geog. Info.
Sys., 2012, pp. 494–497.

[11] W. R. Franklin, M. Inanc, Z. Xie, D. M. Tracy, B. Cutler,
and M. V. A. Andrade, Smugglers and border guards:
the geostar project at RPI, Proc. 15th Intl. Sympos.
Geog. Info. Sys., 2007, pp. 30:1–30:8.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.
Overmars, Probabilistic roadmaps for path planning in
high-dimensional configuration spaces, IEEE T. Robotics
and Automation, 12 (1996), 566–580.

[13] S. M. LaValle, Planning algorithms, Cambridge Univer-
sity Press, 2006.

[14] N. Lebeck, T. Mølhave, and P. K. Agarwal, Comput-
ing highly occluded paths on a terrain, Proc. 21st Intl.
Sympos. Geog. Info. Sys., 2013, pp. 14–23.

[15] M. Lu, J. Zhang, P. Lv, and Z. Fan, Max/min path
visual coverage problems in raster terrain, CAD and
Comp. Graphics, 2007, pp. 497–500.

[16] M. S. Marzouqi and R. A. Jarvis, New visibility-based
path-planning approach for covert robotic navigation,
Robotica, 24 (2006), 759–773.

[17] C. Ó’Dúnlaing, M. Sharir, and C.-K. Yap, Retraction: A
new approach to motion-planning (extended abstract),
Proc. 15th Annu. ACM Sympos. Theory of Comput.,
1983, pp. 207–220.

[18] U. Ozertem and D. Erdogmus, Locally defined principal
curves and surfaces, J. Mach. Learn. Res. 12 (2011),
1249–1286.

[19] D. Shaharabani, O. Salzman, P. K. Agarwal, and
D. Halperin, Sparsification of motion-planning roadmaps
by edge contraction, Proc. IEEE Intl. Conf. Robitics
Auto., 2013, pp. 4098–4105.

[20] S. Shekhar and S. Chawla, Spatial Databases: A Tour,
Prentice Hall, 2003.

[21] K. R. Varadarajan and P. K. Agarwal, Approximating
shortest paths on a nonconvex polyhedron, SIAM J.
Comput., 30 (2000), 1321–1340.

[22] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou,
Shortest path and distance queries on road networks:
towards bridging theory and practice, Proc. ACM Intl.
Conf. Manage. Data, 2013, pp. 857–868.

