
Simplifying Massive Contour Maps

Lars Arge1, Lasse Deleuran1, Thomas Mølhave2?,
Morten Revsbæk1, and Jakob Truelsen3

1 MADALGO†, Department of Computer Science, Aarhus University
2 Department of Computer Science, Duke University.

3 SCALGO, Scalable Algorithmics, Denmark

Abstract. We present a simple, efficient and practical algorithm for
constructing and subsequently simplifying contour maps from massive
high-resolution DEMs, under some practically realistic assumptions on
the DEM and contours.

1 Introduction

Motivated by a wide range of applications, there is extensive work in many
research communities on modeling, analyzing, and visualizing terrain data. A
(3D) digital elevation model (DEM) of a terrain is often represented as a planar
triangulation M with heights associated with the vertices (also known as a tri-
angulated irregular network or simply a TIN). The l-level set of M is the set of
(2D) segments obtained by intersecting M with a horizontal plane at height l.
A contour is a connected component of a level set, and a contour map M the
union of multiple level sets; refer to Figure 1. Contour maps are widely used to
visualize a terrain primarily because they provide an easy way to understand
the topography of the terrain from a simple two-dimensional representation.

Early contour maps were created manually, severely limiting the size and
resolution of the created maps. However, with the recent advances in mapping
technologies, such as laser based LIDAR technology, billions of (x, y, z) points on
a terrain, at sub-meter resolution with very high accuracy (∼10-20 cm), can be
acquired in a short period of time and with a relatively low cost. The massive size
of the data (DEM) and the contour maps created from them creates problems,
since tools for processing and visualising terrain data are often not designed to
handle data that is larger than main memory. Another problem is that contours
generated from high-resolution LIDAR data are very detailed, resulting in a large
amount of excessively jagged and spurious contours; refer to Figure 1. This in
turn hinders their primary applications, since it becomes difficult to interpret
the maps and gain understanding of the topography of the terrain. Therefore we
are interested in simplifying contour maps.

? This work is supported by NSF under grants CCF-06 -35000, CCF-09-40671, and
CCF-1012254, by ARO grants W911NF-07-1-0376 and W911NF-08-1-0452, and by
U.S. Army ERDC-TEC contract W9132V-11-C-0003.

† Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation

Fig. 1. A snapshot of contours generated from the Danish island of Als. The contour
granularity is ∆ = 0.5m, the xy-constraints was εxy = 4m and the vertical constraint
was εz = 0.2m. Left: Original map M, right: simplified map.

Previous work: The inefficiency of most tools when it comes to processing
massive terrain data stems from the fact that the data is too large to fit in main
memory and must reside on slow disks. Thus the transfer of data between disk
and main memory is often a bottleneck (see e.g. [10]). To alleviate this bot-
tleneck one needs algorithms designed in the I/O-model of computation [5]. In
this model, the machine consists of a main memory of size M and an infinite-
size disk. A block of B consecutive elements can be transferred between main
memory and disk in one I/O operation (or simply I/O). Computation can only
take place on elements in main memory, and the complexity of an algorithm is
measured in terms of the number of I/Os it performs. Over the last two decades,
I/O-efficient algorithms and data structures have been developed for several
fundamental problems. See recent surveys [6, 19] for a comprehensive review of
I/O-efficient algorithms. Here we mention that scanning and sorting N elements
takes O(Scan(N)) = O(N/B) and O(Sort(N)) = O(N/B logM/B(N/B)) I/Os,
respectively. The problem of computing contours and contour maps has previ-
ously been studied in the I/O-model [3, 2]. Most relevant for this paper, Agarwal
et al. [2] presents an optimal I/O-efficient algorithm that computes a contour
map in O(Sort(N) + Scan(|M|)) I/Os, where |M| is the number of segments in
the contour map and N is the number of triangles in the DEM. It also computes
the nesting of the contours and the segments around each contour are produced
in sorted order. However, this algorithm is not practical.

Although the problem that contour maps generated from high-resolution LI-
DAR data contain excessively jagged contours can be alleviated by contour map
simplification (while also alleviating some of the scalability problems encoun-
tered when processing contour maps), the main issue is of course to guarantee
the accuracy of the simplified contour map. There are two fundamental ap-
proaches to simplifying a contour map: The DEM M can be simplified before
computing the contour map M, or M can be simplified directly. There has
been a lot of work on simplifying DEMs; refer e.g. to [9, 14] and the references
therein. However, most often the simple approaches do not provide a guarantee
on the simplification accuracy, while the more advanced approaches are not I/O-
efficient and therefore do not scale to large data sets. Developing I/O-efficient
DEM simplification algorithms with simplification guarantees has shown to be

a considerable challenge, although an O(Sort(N)) I/O (topological persistence
based) algorithm for removing “insignificant” features from a DEM (resulting
in small contours) has recently been developed [4]. Simplifying the contour map
M directly is very similar to simplifying a set of polygons (or polygonal lines)
in the plane. Polygonal line simplification is a well studied problem; refer to [16]
for a comprehensive survey. However, there are at least three important differ-
ences between contour maps and polygonal line simplification. Most noticeably,
simplifying a contour line in the plane using a polygonal line simplification algo-
rithms will, even if it guarantees simplification accuracy in the plane, not provide
a z-accuracy guarantee. Furthermore, simplifying the contours individually may
lead to intersections between the simplified contours. Finally, when simplifying
contour maps its very important to preserve the relationships between the con-
tours (the homotopic relationship), that is, maintain the nesting of the contours
in the map. Note that intersections are automatically avoided and homotopy
preserved when simplifying the DEM before computing the contour map.

One polygonal line simplification algorithm that is often favored for its sim-
plicity and high subjective and objective quality on real life data is the Douglas-
Peucker line simplification algorithm [12]. The algorithm simplifies a contour
by removing points from the contour while ensuring that the distance between
the original and the simplified contour is within a distance parameter εxy (but
it does not guarantee that it removes the optimal number of endpoints under
this constraint). Modifications of this algorithm have been developed, that re-
move self-intersections in the output [18], as well as ensure homotopy relative
to a set of obstacles (polygons) [11, 8]. However, these modified algorithms are
complicated and/or not I/O-efficient (and do also not consider z-accuracy).

Our results: In this paper we present a simple, efficient and practical algorithm
for constructing and subsequently simplifying contour maps from massive high-
resolution DEMs, under some practically realistic assumptions on the DEM and
contours. The algorithm guarantees that the contours in the simplified contour
map are homotopic to the unsimplified contours, non-intersecting, and within
a distance of εxy of the unsimplified contours in the xy plane. Furthermore, it
guarantees that for any point p on a contour in the l-level-set of the simplified
contour map, the difference between l and the elevation of p in M (the z-error)
is less than εz. We also present experimental results that show a significant
improvement in the quality of the simplified contours along with a major (about
90%) reduction in size.

Overall, our algorithm has three main components. Given the levels `1, . . . , `d,
the first component, described in Section 3, computes the segments in the contour
map M. The component also computes level-sets for each of the levels `i ± εz,
1 6 i 6 d. The contours generated from these extra levels will be used to ensure
that the z-error is bounded by εz. We call these contours constraint contours
and mark the contours in M that are not constraint contours. The component
also orders the segments around each contour and computes how the contours
are nested. It uses O(Sort(|M|)) I/Os under the practically realistic assumptions
that each contour, as well as the contour segments intersected by any horizontal

line, fit in memory. This is asymptotically slightly worse than the theoretically
optimal but complicated algorithm by Agarwal et al. [2]. The second component,
described in Section 4, computes, for each of the marked contours P , the set
P of contours that need to be considered when simplifying P . Intuitively, P
contains all (marked as well as constraint) contours that can be reached from P
without crossing any other contour ofM. Although each contour can be involved
in many sets P, the entire algorithm uses only O(Sort(|M|)) I/Os. The third
component, described in Section 5, simplifies each marked contour P within P.
This is done using a modified version of the Douglas-Peucker line simplification
algorithm [12]. As with the Douglas-Peucker algorithm it guarantees that the
simplified contour P ′ is within distance εxy of the original contour P , but it also
guarantees that P ′ is homotopic to P (with respect to P) and that P ′ does not
have self intersections. The existence of the constraint contours in P together
with the homotopy guarantee that the z-error is within εz. Under the practically
realistic assumptions that each contour P along with P fits in internal memory,
the algorithm does not use any extra I/Os.

Finally, the details on the implementation of our algorithm are given in Sec-
tion 6 along with experimental results on a terrain data set of Denmark with
over 12 billion points.

2 Preliminaries

Terrains: We consider the terrain M to be represented as a triangular irregular
network, which is a planar triangulation whose vertices v are associated with
heights h(v). The height of a point interior to a triangle is determined by linearly
interpolating from the triangle vertex heights; we use h(p) to refer to the height
of any point p in R2.

Paths and polygons: Let p1, . . . , pn, be a sequence of n > 1 points in R2. The
path Q defined by these points is the set of line segments defined by pairs of
consecutive points in the sequence. The points p1, . . . , pn are called the vertices
of Q. A simple path is a path where only consecutive segments intersect, and
only at the endpoints. Given integers 1 6 i < j 6 n, the sub-path Qij is the path
defined by the vertices pi, pi+1, . . . , pj . We abuse notation slightly by using Q to
denote both the sequence of vertices, and the path itself. We define the size of
Q as its number of segments, i.e. |Q| = n− 1. A path Q′ is a simplification of a
path Q if Q′ ⊆ Q and the vertices of Q′ appear in the same order as in Q.

A polygon (simple polygon) is a path (simple path) P where p1 = pn. A
simple polygon P partitions R2 \ P into two open sets — a bounded one called
inside of P and denoted by P i, and an unbounded one called outside of P and
denoted by P o. We define a family of polygons to be a set of non-intersecting
and vertex-disjoint simple polygons. Consider two simple polygons P1 and P2

in a family of polygons A. P1 and P2 are called neighbors if no polygon P ∈ A
separates them, i.e., there is no P where one of P1 and P2 is contained in P i

and the other in P o. If P1 is a neighbor of P2 and P1 ⊂ P i
2, then P1 is called a

child of P2, and P2 is called the parent of P1; we will refer to the parent of P

P

(a)

P ′

Q

(b)

Fig. 2. (a) Polygonal domain P (solid lines) of P (dashed lines). (b) Polygon P ′ is
homotopic to P in P, Q is not.

as P̂ . The topology of a family of polygons M describes how the polygons are
nested i.e. the parent/child relationship between polygons. Given a polygon P
in A, the polygonal domain of P , denoted P, consists of the neighbors P1 . . . Pk
of P in A; refer to Figure 2(a). We define the size of P to be |P| = |P |+

∑
i |Pi|.

Intuitively, two paths Q and Q′ are homotopic with regards to a polygonal
domain P if one can be continuously transformed into the other without inter-
secting any of the polygons of P; refer to Figure 2. Path Q′ is strongly homotopic
to Q if Q′ is a simplification of Q and if every segment q′iq

′
i+1 in Q′ is homotopic

to the corresponding sub-path Qk,l where q′i = qk and q′j = ql. It follows that
Q and Q′ are also homotopic, but the reverse implication does not necessarily
hold.

Given two indices 1 6 i, j 6 n we define the distance d(p, i, j) between
any point p ∈ R2 and line segment pipj as the distance from p perpendicular
to the line defined by pipj . We define the error ε(i, j) of replacing Pi,j with
the line segment pipj to be the maximum distance between the vertices of Pij
and pipj , i.e. ε(i, j) = max{d(pi, i, j), d(pi+1, i, j), . . . , d(pj , i, j)}. Let P ′ be a
simplification of P . Given a simplification threshold ε, we say that P ′ is a valid
simplification of P if it is a simple polygon homotopic to P in P and ε(i, j) < ε
for any segment pipj of P ′.

Contours and contour maps: For a given terrain M and a level ` ∈ R, the
`-level set of M, denoted by M`, is defined as h−1(`) =

{
x ∈ R2 | h(x) = `

}
. A

contour of a terrain M is a connected component of a level set of M. Given a
list of levels `1 < . . . < `d ∈ R, the contour map M of M is defined as the union
of the level-sets M`1 , . . . ,M`d . For simplicity, we assume that no vertex of M
has height `1, . . . , `d and we assume that M is given such that M`1 consists of
only a single boundary contour U . This implies that the collection of contours in
the contour map form a family of polygons and that each polygon in the family,
except U , has a parent. It allows us to represent the topology of M as a tree
T = (V,E) where the vertices V is the family of polygons and where E contains
an edge from each polygon P 6= U to its parent polygon P̂ . The root of T is U .
We will refer to T as the topology tree of M.

3 Building the Contour Map

In this section we describe our practical and I/O-efficient algorithm for con-
structing the contour map M of the terrain M and the topology tree T of M,

given a list of regular levels `1 < . . . < `d ∈ R. We will representM as a sequence
of line segments such that the clockwise ordered segments in each polygon P of
M appear consecutively in the sequence, and T by a sequence of edges (P2,P1)
indicating that P2 is the parent of P1; all segments in M of polygon P will be
augmented with (a label for) P and the BFS number of P in T . We will use that
the segments in any polygon P inM, as well as the segments inM intersecting
any horizontal line, fit in memory.

Computing contour map M: To construct the line segments in M, we first
scan over all the triangles of M. For each triangle f we consider each level `i
within the elevation range of the three vertices of f and construct a line segment
corresponding to the intersection of z`i and f . To augment each segment with
a polygon label, we then view the edges as defining a planar graph such that
each polygon is a connected component in this graph. We find these connected
components practically I/O-efficiently using an algorithm by Arge et al. [7], and
then we use the connected component labels assigned to the segments by this
algorithm as the polygon label. Next we sort the segments by their label. Then,
since the segments of any one polygon fit in memory, we can in a simple scan
load the segments of each polygon P into memory in turn and sort them in
clock-wise order around the boundary of P .

Computing the topology tree T of M: We use a plane-sweep algorithm
to construct the edges of T from the sorted line segments in M. During the
algorithm we will also compute the BFS number of each polygon P in T . After
the algorithm it is easy to augment every segment in M with the BFS number
of the polygon P it belongs to in a simple sorting and scanning step.

For a given µ ∈ R, let yµ be the horizontal line through µ. Starting at
µ = y∞, our algorithm sweeps the line yµ though the (pre-sorted) edges of M
in the negative y-direction. We maintain a search tree S on the set of segments
of M that intersect yµ. For each edge in S we maintain the invariant that we
have already computed its parent and that each edge also knows the identity
of its own polygon. The set of edges in S changes as the sweep-line encounters
endpoints of segments inM, and each endpoint v from some polygon P has two
adjacent edges s1 and s2. If the other two endpoints of s1 and s2 are both above
yµ we simply delete s1 and s2 from S. If both endpoints are below yµ and there
is not already a segment from P in S, then this is the first time P is encountered
in the sweep. We can then use S to find the closest polygon segment s3 from
some other polygon P1 to the left of v. Depending on the orientation of s3 we
know that the parent of P , P̂ is either P1, or the parent of P1 which is stored
with P1 in S, and we can output the corresponding edge (P, P̂) of T . It is easy
to augment this algorithm so that it also computes the BFS number of each P
in T by also storing, with each edge of S, the BFS rank r of its parent, the rank
of a child polygon is then r + 1. Details will appear in the full version of this
paper.

Analysis: The algorithm for computing the contour mapM uses O(Sort(|M|))
I/Os: First it scans the input triangles to produce the segments of M and in-
vokes the practically efficient connected component algorithm of Arge et al. [7]

that uses O(Sort(|M|)) I/Os under the assumption that the segments in M in-
tersecting any horizontal line fit in memory. Then it sorts the labeled segments
using another O(Sort(|M|)) I/Os. Finally, it scans the segments to sort each
polygon in internal memory, utilizing that the segments in any polygon P inM
fits in memory.

Also the algorithm for computing the topology tree T uses O(Sort(|M|)):
After scanning the segments of M to produce L, it performs one sort and one
scan of L, utilizing the assumption that S fits in memory. In the full paper we
show that augmenting each segment inM with the BFS number of the polygon
P that it belongs to, can also be performed in O(Sort(|M|)) in a simple way.

4 Simplifying Families of Polygons

In this section we describe our practical and I/O-efficient algorithm for simpli-
fying a set of marked polygons in a family of polygons given an algorithm for
simplifying a single polygon P within its polygonal domain P. In essence the
problem consist of computing P for each marked polygon P . We assume the
family of polygons is given by a contour map M represented by a sequence of
line segments such that the clockwise ordered segments in each polygon P ofM
appear consecutively in the sequence, and a topology tree T given as a sequence
of edges (P ,P̂) indicating that P̂ is the parent of P ; all segments inM of polygon
P are augmented with (a label for) P and the BFS number of P in T .

To compute P for every marked P we need to retrieve the neighbors of
P in M. These are exactly the parent, siblings and children of P in T . Once
P and the simplification P ′ of P has been computed we need to update M
with P ′. We describe an I/O-efficient simplification algorithm that allows for
retrieving the polygonal domains and updating polygons without spending a
constant number of I/Os for each marked polygon. The algorithm simplifies the
polygons across different BFS levels of T in order of increasing level, starting
from the root. Within a given level the polygons are simplified in the same order
as their parents were simplified. Polygons with the same parent can be simplified
in arbitrary (label) order. Below we first describe how to reorder the polygons in
M such that they appear in the order they will be simplified. Then we describe
how to simplify M.

Reordering: To reorder the polygons we first compute the simplification rank
of every polygon P i.e. the rank of P in the simplification order described above.
The simplification rank for the root of T is 0. To compute ranks for the remain-
ing polygons of T , we sort the edges (P, P̂) of T in order of increasing BFS
level of P . By scanning through the sorted list of polygons, we then assign sim-
plification ranks to vertices one layer at a time. When processing a given layer
we have already determined the ranks of the previous layer and can therefore
order the vertices according to the ranks of their parents. After computing the
simplification ranks we can easily reorder the polygons in a few sort and scan
steps. Details will appear in the full paper.

Simplifying: Consider the sibling polygons P1, P2 . . . Pk in M all sharing the
same parent P in T . The polygonal domains of these sibling polygons all share
the polygons P, P1, P2 . . . Pk. We will refer to these shared polygons as the open
polygonal domain of P and denote them Popen(P). It is easily seen that P for
Pi where i = 1 . . . k is equal to Popen(P) together with the children of Pi.

We now traverse the polygons of M in the order specified by their simplifi-
cation ranks, and refer to P as an unfinished polygon if we have visited P but
not yet visited all the children of P . During the traversal we will maintain a
queue Q containing an open polygonal domain for every unfinished polygon.
The algorithm handles each marked polygon P as follows; if P is the root of T
then P simply corresponds to the children of P which are at the front of M.
Given P we invoke the polygon simplification algorithm to get P ′. Finally, we
put Popen(P ′) at the back of Q. If P is not the root of T , it will be contained

in the open polygonal domain Popen(P̂). Since P̂ is the unfinished polygon with

lowest simplification rank, Popen(P̂) will be the front element of Q. If P is the

first among its siblings to be visited, we retrieve Popen(P̂) from Q, otherwise it
has already been retrieved and is available in memory. To get P, we then retrieve
the children of P from M and combine them with Popen(P̂) (if P is a leaf then

P = Popen(P̂)). Finally, we invoke the polygon simplification algorithm on P
and P to get P ′ and put the open polygonal domain of P ′ at the back of Q.
It is easy to see that this algorithm simplifies M, details will appear in the full
version of this paper.

Analysis: Both reordering and simplifying is done with a constant number of
sorts and scans of M and therefore require O(Sort(|M|)) I/Os.

5 Internal Simplification Algorithm

In this section we describe our simplification algorithm, which given a single
polygon P along with its polygonal domain P outputs a valid simplification P ′

of P .

Simplifying P : We first show how to compute a simplification Q∗ of a path or
polygon Q such that Q∗ is homotopic to Q in P, based on the Douglas-Peucker
algorithm [12]. The recursive algorithm is quite simple. Given Q and a sub-path
Qij for i < j + 1 to simplify, we find the vertex pk in Qij maximizing the error
ε(i, j). Then we insert vertex pk in the output path Q∗ and recurse on Qik
and Qkj . When the error is sufficiently small, i.e. ε(i, j) < εxy, we check if the
segment of Q∗ is homotopic to Pij . If this is the case the recursion stops. By
construction every segment pipj of Q∗ is homotopic to Qij . This implies that Q∗

is strongly homotopic to Q, which again implies that Q∗ and Q are homotopic.
When the input to the algorithm above is a polygon P the output is also a

polygon P ∗. However, even though P ∗ is homotopic to P , it is not necessarily a
valid simplification since P ∗ may not be simple. Thus after using the algorithm
above we may need to turn P ∗ into a simple polygon P ′. This is done by find-
ing all segments s of P ∗ that intersect and add more vertices from P to those

segments using the same algorithm as above. Once this has been done we check
for new intersections and keep doing this until no more intersection are found.
Details will appear in the full paper.

Checking segment-sub-path homotopy: To check if a segment pipj is ho-
motopic to Pij in the above algorithm we need to be able to navigate the space
around P. Since P is given as a set of ordered simple polygons, we can efficiently
and easily compute its trapezoidal decomposition D using a simple sweep line
algorithm on the segments of P. To check homotopy we use the ideas of Cabello
et al. [8] but arrive at a simpler algorithm by taking advantage of D. We define
the trapezoidal sequence t(Q) of a path Q to be the sequence of trapezoids tra-
versed by Q, sorted in the order of traversal. Using an argument similar to the
ones used in [8, 17] it is easy to show that if two paths have the same trapezoidal
sequence then they are homotopic. Furthermore, in the full paper we show that
if t(Q) contains the subsequence tt′t for trapezoids t, t′ ∈ D then this subse-
quence can be replaced by t without affecting Q’s homotopic relationship to any
other path; we call this a contraction of t(Q). By repeatedly performing con-
tractions on the sequence t(Q) until no more contractions are possible we get a
new sequence tc(Q), called the canonical trapezoidal sequence of Q. Q and Q′

are homotopic if and only if tc(Q) = tc(Q
′) [8, 17].

Our algorithm for checking if two paths/polygons are homotopic simply com-
putes and compares their canonical trapezoidal sequences. Note however that,
for a path Q, the sizes of t(Q′) and tc(Q

′) are not necessarily linear in the size
of the decomposition D. In our case, we are interested in checking an instance
of the strong homotopy condition, i.e. we want to check if a segment s = pipj
is homotopic to Qi,j . Since s is a line segment, we know that tc(s) = t(s), and
we can thus simply traverse the trapezoids along in Qi, tracing out tc(Qij), and
check that s intersects the same trapezoids as we go along, we do not need to
precompute and store) t(Qij).

Analysis We assume that P and Q fit in memory. Since the size of D is linear
in the size of P, it also fits in memory and the entire algorithm thus uses no
I/Os. The I/Os needed to bring P and Q into memory were accounted for in the
previous section.

6 Experiments

In this section we describe the experiments performed to verify that our algo-
rithm for computing and simplifying a contour mapM performs well in practice.

Implementation: We implemented our algorithm using the TPIE[1]: environ-
ment for efficient implementation of I/O-efficient algorithms, while taking care
to handle all degeneracies (e.g. contours with height equal to vertices of M,
contour points with the same x− or y-coordinate, and the existence of a sin-
gle boundary contour). The implementation takes an input TIN M along with
parameters εxy and εz, and ∆, and produces a simplified contour map M with
equi-spaced contours at distance ∆.

εxy in m. 0.2 0.5 1 2 3 5 10 15 20 25 50

Output points (%) 40.4 23.7 15.2 10.2 8.8 7.9 7.6 7.6 7.6 7.6 7.6

εz points 0.8 5.0 13.9 33.5 46.0 59.3 71.7 76.3 78.8 80.4 84.1

εxy points 99.2 95.0 86.1 66.5 54.0 40.7 28.3 23.7 21.2 19.6 15.9

Table 1. Results for Funen with different εxy thresholds (εz = 0.2m and with ∆ =
0.5m).

We implemented one major internal improvement compared to algorithm de-
scribed in Section 5, which results in a speed-up of an order of magnitude: As
described in Section 5 we simplify a polygon P by constructing a trapezoidal
decomposition of its entire polygonal domain P. In practice, some polygons are
very large and have many relatively small child polygons. In this case, even
though a child polygon is small, its polygonal domain (and therefore also its
trapezoidal decompositions) will include the large parent together with its sib-
lings. However, it is easy to realize that for a polygon P it is only the subset
of P within the bounding box of P that can constrain its simplification, and
line segments outside the bounding box can be ignored when constructing the
trapezoidal decomposition. We incorporate this observation into our implemen-
tation by building an internal memory R-tree [15] for each polygon P in the
open polygonal domain Popen(P̂). These R-trees are constructed when loading
large open polygonal domain into memory. To retrieve the bounding box of a
given polygon P in Popen(P̂), we query the R-trees of its siblings and its parent,
and retrieve the children of P as previously.

Data and Setup: All our experiments were performed on a machine with an
8-core Intel Xenon CPU running at 3.2GHz and 12GB of RAM. For our exper-
iments we used a terrain model for the entire country of Denmark constructed
from detailed LIDAR measurements (the data was generously provided to us by
COWI A/S). The model is a 2m grid model giving the terrain height for every
2m · 2m in the entire country, which amounts to roughly 12.4 billion grid cells.
From this grid model we built a TIN by triangulating the grid cell center points.
Before triangulating and performing our experiments, we used the concept of
topological persistence [13] to compute the depth of depressions in the model.
This can be done I/O-efficiently using an algorithm by Agarwal et. al [4]. For
depressions that are not deeper than ∆ it is coincidental whether the depression
results in a contour or not. In case a contour is created it appears noisy and spu-
rious in the contour map. For our experiments, we therefore raised depressions
with a depth less than ∆. We removed small peaks similarly by simply inverting
terrain heights. Our results show that this significantly reduces the size of the
non-simplified contour map. Details will appear in the full paper.

Experimental Results: In all our experiments we generate contour maps with
∆ = 0.5m, and since the LIDAR measurements on which the terrain model of
Denmark is based have a height accuracy of roughly 0.2m, we used εz = 0.2m
in the experiments. In order to determine a good value of εxy we first performed
experiments on a subset of the Denmark dataset consisting of 844, 554, 140 grid
cells and covering the island of Funen. Below we first describe the results of

Dataset Funen Denmark

Input points 365,641,479 4,046,176,743

Contours 636,973 16,581,989

Constraint factor 3 3

Running time (hours) 1.5 39

Output points (% of input points) 7.9 8.2

εz points (% of output points) 59.3 57.8

εxy points (% of output points) 40.7 42.2

Total number of intersections 38,992 585,813

Contours with intersections (% of input contours) 2.4 1.1
Table 2. Results for Funen and Denmark with ∆ = 0.5m, εz = 0.2m and εxy = 5m.

these experiments and then we describe the result of the experiments on the
entire Denmark dataset. When discussing our results, we will divide the number
of contour segment points in the simplified contour map (output points) into εz
points and εxy points. These are the points that were not removed due to the
constraint contours and the constraints of our polygon simplification algorithm
(e.g. εxy), respectively.

Funen dataset: The non-simplified contour map generated from the triangulation
of Funen consists of 636, 973 contours with 365, 641, 479 points (not counting
constraint contours). The results of our test runs are given in Table 1. The
number of output points is given as a percentage of the number of points in the
non-simplified contour map (not counting constraint contours). From the table
it can be seen that the number of output points drops significantly as εxy is
increased from 0.2m up to 5m. However, for values larger than 5m the effect
on output size of increasing εxy diminishes. This is most likely linked with high
percentage of εz points in the output e.g. for εxy = 10m we have that 71.7% of
the output points are εz points (and increasing εxy will not have an effect on
these).

Denmark dataset: When simplifying the contour map of the entire Denmark
dataset we chose εxy = 5m, since our test runs on Funen had shown that in-
creasing εxy further would not lead to a significant reduction in output points.
Table 2 gives the results of simplifying the contour map of Denmark. The non-
simplified contour map consists of 4, 046, 176, 743 points on 16, 581, 989 contours.
Adding constraint contours increases the contour map size with a factor 3 (the
constraint factor) both in terms of points and contours. In total it took 39 hours
to generate and simplify the contour map and the resulting simplified contour
map contained 8.2% of the points in the non-simplified contour map (not count-
ing constraint contours). Since 57.8% of the output points were εz points, it is
unlikely that increasing εxy would reduce the size of the simplified contour map
significantly. This corresponds to our observations on the Funen dataset. Table 2
also contains statistics on the number of self-intersections removed after the sim-
plification (as discussed in Section 5); both the actual number of intersections
and the percentage of the contours with self-intersections are given. As it can be
seen these numbers are relatively small and their removal does not contribute
significantly to the running time. The largest contour consisted of 8, 924, 584

vertices while the largest family consisted of 19, 145, 568 vertices, which easily
fit in memory.

References

1. TPIE - Templated Portable I/O-Environment. http://madalgo.au.dk/tpie.
2. P. Agarwal, L. Arge, T. Mølhave, and B. Sadri. I/O-efficient algorithms for com-

puting contours on a terrain. In Proc. Symposium on Computational Geometry,
pages 129–138, 2008.

3. P. K. Agarwal, L. Arge, T. M. Murali, K. Varadarajan, and J. S. Vitter. I/O-
efficient algorithms for contour line extraction and planar graph blocking. In Proc.
ACM-SIAM Symposium on Discrete Algorithms, pages 117–126, 1998.

4. P. K. Agarwal, L. Arge, and K. Yi. I/O-efficient batched union-find and its appli-
cations to terrain analysis. ACM Trans. Algorithms, 7(1):11:1–11:21, Dec. 2010.

5. A. Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and
related problems. Commun. ACM, 31(9):1116–1127, 1988.

6. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and
M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313–358. 2002.

7. L. Arge, K. Larsen, T. Mølhave, and F. van Walderveen. Cleaning massive sonar
point clouds. In Proc ACM SIGSPATIAL International Symposium on Advances
in Geographic Information Systems, pages 152–161, 2010.

8. S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink. Testing homotopy for paths in
the plane. In Proc. Symposium on Computational geometry, pages 160–169, 2002.

9. H. Carr, J. Snoeyink, and M. van de Panne. Flexible isosurfaces: Simplifying and
displaying scalar topology using the contour tree. Computational Geometry, pages
42–58, 2010. Special Issue on the 14th Annual Fall Workshop.

10. A. Danner, T. Mølhave, K. Yi, P. Agarwal, L. Arge, and H. Mitasova. TerraStream:
From elevation data to watershed hierarchies. In Proc. ACM International Sym-
posium on Advances in Geographic Information Systems, pages 28:1–28:8, 2007.

11. M. de Berg, M. van Kreveld, and S. Schirra. A new approach to subdivision
simplification. In Proc. 12th Internat. Sympos. Comput.-Assist. Cartog., pages
79–88, 1995.

12. D. Douglas and T. Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature, 1973.

13. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and
simplification. In Proc. IEEE Symposium on Foundations of Computer Science,
pages 454–463, 2000.

14. M. Garland and P. Heckbert. Surface simplification using quadric error metrics.
In Proc. Computer graphics and interactive techniques, pages 209–216, 1997.

15. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc.
SIGMOD International Conference on Management of Data, pages 47–57, 1984.

16. P. S. Heckbert and M. Garland. Survey of polygonal surface simplification algo-
rithms. Technical report, CS Dept., Carnegie Mellon U. to appear.

17. J. Hershberger and J. Snoeyink. Computing minimum length paths of a given
homotopy class. Comput. Geom. Theory Appl., pages 63–97, 1994.

18. A. Saalfeld. Topologically consistent line simplification with the douglas peucker
algorithm. In Geographic Information Science, 1999.

19. J. Vitter. External memory algorithms and data structures: Dealing with MAS-
SIVE data. ACM Computing Surveys, pages 209–271, 2001.

