
Maintaining Contour Trees of Dynamic Terrains∗

Pankaj K. Agarwal1, Thomas Mølhave2, Morten Revsbæk3,
Issam Safa4, Yusu Wang5, and Jungwoo Yang3

1 Department of Computer Science, Duke University, USA
2 Scalable Algorithmics – SCALGO, USA
3 MADALGO – Center for Massive Data Algorithmics, Aarhus University,

Denmark
4 Computational Lithography Group, Intel Corporation, USA
5 Department of Computer Science and Engineering, The Ohio State University,

USA

Abstract
We study the problem of maintaining the contour tree T of a terrain Σ, represented as a tri-
angulated xy-monotone surface, as the heights of its vertices vary continuously with time. We
characterize the combinatorial changes in T and how they relate to topological changes in Σ. We
present a kinetic data structure (KDS) for maintaining T efficiently. It maintains certificates
that fail, i.e., an event occurs, only when the heights of two adjacent vertices become equal or
two saddle vertices appear on the same contour. Assuming that the heights of two vertices of
Σ become equal only O(1) times and these instances can be computed in O(1) time, the KDS
processes O(κ+ n) events, where n is the number of vertices in Σ and κ is the number of events
at which the combinatorial structure of T changes, and processes each event in O(logn) time.
The KDS can be extended to maintain an augmented contour tree and a join/split tree.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
problems and computations

Keywords and phrases Contour tree, dynamic terrain, kinetic data structure

Digital Object Identifier 10.4230/LIPIcs.SOCG.2015.796

1 Introduction

Let M be a triangulation of R2, also known as a triangulated irregular network (TIN), and
let h : M→ R be a continuous function, often called a height function, that is linear within
each triangle of M. The graph of h, denoted by Σ, is a triangulated xy-monotone surface
in R3 and is called a terrain. There has been extensive work in computational geometry,
GIS, and spatial databases on the design and analysis of terrain-analysis algorithms such as
flood-risk analysis, visibility analysis, and navigation.

Given a height value `, the level set of the height function h is the set of all points in M
whose height values are `. As ` varies, the level set continuously deforms and its topology
changes at certain heights. Level sets and their topology are often used for the analysis and
visualization of height functions. The contour tree of a height function encodes the evolution

∗ P.A. and T.M. supported by the ARO contract W911NF-13-P-0018; P.A. also supported by NSF
under grants CCF-09-40671, CCF-10-12254, and CCF-11-61359, and by Grant 2012/229 from the
U.S.–Israel Binational Science Foundation; M.R. and J.Y. supported by Center for Massive Data
Algorithmics, a Center of the Danish National Research Foundation; Y.W. supported by NSF under
grants CCF-0747082 and CCF-1319406.

© Pankaj K. Agarwal, Thomas Mølhave, Morten Revsbæk, Issam Safa, Yusu Wang,
and Jungwoo Yang;
licensed under Creative Commons License CC-BY

31st International Symposium on Computational Geometry (SoCG’15).
Eds.: Lars Arge and János Pach; pp. 796–811

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SOCG.2015.796
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 797

of the level sets and succinctly represents the topology of all level sets, and it has found
applications in a wide array of data analysis and visualization problems [4, 6, 10, 11, 15].

A variety of applications involve height functions that vary with time. In some cases, the
height function may vary continuously with time (e.g., temperature, air pressure, etc.), or it
may be updated dynamically at discrete time values (e.g., the height function models the
elevation of points on the Earth, and the elevation is updated because of new measurements
reflecting the changes due to natural processes or human activity, or a user interacting with
a GIS may wish to change the elevation at some places to see its impact on the hydrology,
mobility, visibility of the surface). Motivated by theses applications we study how the contour
tree changes as the height function varies with time. Even if the height function is updated
in discrete steps, the only efficient way we know to update the contour tree is to treat such
an update as a continuous change from the old value to the new value. We therefore focus
on the case when the height function varies continuously with time.

Related work. Van Kreveld et al. [20] gave an O(n logn)-time algorithm for constructing
the contour tree of a piecewise-linear height function on R2, where n is the number of linear
pieces in the height function. Their algorithm was extended to R3 by Tarasov and Vyalyi [19],
and to arbitrary dimensions by Carr et al. [9]. Agarwal et al. [3] gave an I/O-efficient
algorithm for constructing the contour tree of a terrain representation that does not fit in
main memory.

There has been some work on contour trees of time-varying height functions. Sohn and
Bajaj [17] and Szymczak [18] compute a mapping between the contour trees of the height
function at successive time steps, but they ignore (possibly many) combinatorial changes
in the contour tree between the time steps. Furthermore they compute the contour tree
at each time step using a static algorithm. Edelsbrunner et al. [12] study how the Reeb
graph (generalization of contour tree for height functions over manifolds with non-zero genus)
of a smooth function on three-dimensional space evolves over time. They characterize the
combinatorial changes in the Reeb graph, and they describe an algorithm for updating the
Reeb graph whenever a combinatorial change occurs. Their algorithm, however, works in
an off-line setting, i.e., they assume that the height function over all time values is given in
advance, and the algorithm takes O(n) time to update the graph at each event.

There is extensive work in computational geometry on maintaining geometric/topological
structures over a set of continuously moving or varying objects mostly under the kinetic data
structure (KDS) framework introduced by Basch et al. [5]. See [13] for a survey of this line
of work.

Our results. We describe the first KDS for maintaining the contour tree of a time-varying
piecewise-linear height function over a simple triangulated (zero-genus) 2-manifold. The
KDS can be extended to maintain the augmented contour tree and the join/split tree.

Our first result is a detailed characterization of the combinatorial changes in the contour
tree, more refined than what is described in [12], and how they relate to topological changes
in the height function (Section 3). This refined characterization, together with the use of
two auxiliary trees, enables us to develop an efficient algorithm for updating the contour
tree at each combinatorial change. The second result (Section 4) is a linear-size KDS for
maintaining the contour tree. Assuming that the height of each vertex, as a function of time,
is specified by a polynomial of constant degree and that the roots of these polynomials can
be computed in O(1) time, the KDS can update the contour tree in O(logn) time at each
event. The KDS processes a total of O(κ+n) events, where κ is the number of combinatorial

SoCG’15

798 Maintaining Contour Trees of Dynamic Terrains

changes in the contour tree and n is the number of vertices in the triangulation. Finally we
adapt our KDS to maintain the augmented contour tree and the join/split tree (Section 5).

2 Preliminaries

Terrains. Let M = (V,E, F) be a triangulation of R2, with vertex, edge, and face (triangle)
sets V , E, and F , respectively, and let n = |V |. For simplicity we focus on M being a
triangulation of R2, but our algorithm works for any genus-zero 2-manifolds. We assume that
V contains a vertex v∞ at infinity, and that each edge {u, v∞} is a ray emanating from u;
the triangles in M incident to v∞ are unbounded. Let h : M→ R be a height function. We
assume that the restriction of h to each triangle of M is a linear map, that h approaches −∞
at v∞, and that the heights of all vertices are distinct. Given M and h, the graph of h, called
a terrain and denoted by Σ, is an xy-monotone triangulated surface whose triangulation is
induced by M. The vertices, edges, and faces of Σ are in one-to-one correspondence with
those of M and with a slight abuse of terminology we refer to V , E, and F , as vertices, edges,
and triangles of both Σ and M.

Critical points. For a vertex v of M, the star of v, denoted by St(v), consists of all triangles
incident on v. The link of v, denoted by Lk(v), is the boundary of St(v), i.e., the cycle
formed by the edges of M that are not incident on v but belong to the triangles of St(v).
The lower (resp. upper) link of v, Lk−(v) (resp. Lk+(v)), is the subgraph of Lk(v) induced
by vertices u with h(u) < h(v) (resp. h(u) > h(v)).

A minimum (resp. maximum) of M is a vertex v for which Lk−(v) (resp. Lk+(v)) is
empty. A maximum or a minimum vertex is called an extremal vertex. A non-extremal vertex
v is regular if Lk−(v) (and also Lk+(v)) is connected, and saddle otherwise. A vertex that is
not regular is called a critical vertex. For simplicity, we assume that each saddle vertex v is
simple, meaning that Lk−(v) (and also Lk+(v)) consists of two connected components. If M
contains a non-simple saddle, then we can split it into multiple simple saddles.

Level sets and contours. For ` ∈ R, the `-level set, `-sublevel set, and `-superlevel set of
M, denoted by M`, M<`, M>`, respectively, consist of points x ∈M, with h(x) = `, h(x) < `,
and h(x) > `, respectively. We refer to a level set M` where ` = h(v) for some critical vertex v
as a critical level. A contour of M is a connected component of a level set of M. Each vertex
v ∈ V is contained in exactly one contour in Mh(v), which we call the contour of v. A contour
not passing through a critical vertex is a simple polygonal cycle with non-empty interior.
A contour passing through an extremal vertex is a single point, and by our assumption, a
contour passing through a saddle consists of two simple cycles with the saddle vertex being
their only intersection point. A contour C not passing through a vertex can be represented
by the cyclic sequence of edges of M denoted by E(C), that it passes through. Two contours
are called combinatorially identical if their cyclic sequences are the same.

Let ε = ε(Σ) denote a sufficiently small positive value, in particular, smaller than the
height difference between any two vertices of M. An up-contour of a saddle vertex α is any
contour of Mh(α)+ε that intersects an edge incident on α. Similarly, a down-contour of α
is any contour of Mh(α)−ε that intersects an edge incident on α. If α has two up-contours
and one down-contour it is called a positive saddle vertex. If it has two down-contours and
one up-contour it is called a negative saddle vertex. A simple saddle v is either negative or
positive.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 799

α2
α1

α3

α4
α5

y1
y2

x1

x2
x3

x4

α2

α1

α4

α5

y1
y2

x1 x2

x3

x4α3

(a) (b) (c)

Figure 1 (a) (b) An example terrain depicted with contours through saddle vertices and showing
the critical vertices of the terrain: α1 (α5) is a blue (red) −ve saddle, and α3 (α4) is a lue (red) +ve
saddle. (c) The contour tree of the terrain in (a).

Following the notation in [1], a contour C of M` is called blue if points locally in the
interior of C belong to M<` and red otherwise. A positive (resp. negative) saddle vertex is
colored by the color of its unique down-contour (resp. up-contour). Refer to Figure 1 to see
the possible saddle colors.

Contour trees. Consider raising ` from −∞ to ∞. The contours continuously deform, but
no changes happen to the topology of the level set as long as ` varies between two consecutive
critical levels. A new contour appears as a single point at a minimum vertex, and an existing
contour contracts into a single point and disappears at a maximum vertex. An existing
contour (the down-contour of v) splits into two new contours (the up-contours of v) at a
positive saddle vertex v, and two contours (the down-contours of v) merge into one contour
(the up-contour of v) at a negative saddle vertex v. The contour tree T of h is a tree on the
critical vertices of M that encodes these topological changes of the level set. An edge (v, w)
of T represents the contour that appears at v and disappears at w.

More formally, two contours C1 and C2 at levels `1 and `2, respectively, are called
equivalent if C1 and C2 belong to the same connected component of Γ = {x ∈ R2 | `1 ≤
h(x) ≤ `2} and that component of Γ does not contain any critical vertex. An equivalence
class of contours starts and ends at critical vertices. If a class starts at a critical vertex v and
ends at w, then (v, w) is an edge in T. We refer to v as a down neighbor of w and to w as an
up neighbor of v. Equivalently T is the quotient space in which each contour is represented
by a point and connectivity is defined in terms of the quotient topology. Let ρ : M→ T be
the associated quotient map, which maps all points of a contour to a single point on an edge
of T. Fix a point p in M. If p is not a critical vertex, ρ(p) lies in the relative interior of an
edge in T; if p is an extremal vertex, ρ(p) is a leaf node of T; and if p is a saddle vertex then
ρ(p) is a non-leaf node of T. See Figure 1.

We assume that each vertex of T is labeled with the corresponding critical vertex of
M. The combinatorial description of T is the set of its vertices along with their labels, and
the set of its edges. We also consider augmenting the contour tree with regular vertices to
produce the augmented contour tree TA. For each regular vertex v in M, we insert a degree
two vertex into T at ρ(v).

Ascent and descent trees. We construct descent trees as follows: For each vertex u ∈M,
if u is not a minimum then we choose a vertex w ∈ Lk−(u) and create the edge (u,w). This
process results in a forest of trees, each rooted at a minimum vertices of M. We denote the
descent tree rooted at x as Π↓(x). Similarly, we construct a forest of ascent trees, obtained

SoCG’15

800 Maintaining Contour Trees of Dynamic Terrains

by creating the edge (v, w) from every vertex v to a single vertex w in Lk+(v) unless v is a
maximum. Each ascent tree is rooted at a maximum vertex y and is denoted by Π↑(y). Note
that the descent tree forest partitions the vertices of M and the same is true for ascent trees.
Lemma 1 below describes how the ascent and descent trees relate to the contour tree.

I Lemma 1. Let v be a regular vertex in M, and let x (resp. y) be the minimum (resp.
maximum) of M such that Π↓(x) (resp. Π↑(y)) contains v. Then the path P in T between x
and y contains ρ(v) and the heights of the vertices on P are monotone.

3 Time Varying Contour Tree

Suppose the height function varies with time. That is, we have a one parameter family of
height functions over M, h : M× R→ R, where the extra dimension in the domain is time.
In this section, we characterize how and when the contour tree of (M, h) changes with time.
In particular, we describe all the combinatorial changes in the contour tree. For simplicity,
we assume h to be generic in the sense: (i) at any given time t, at most two vertices have the
same height; (ii) the heights of any two vertices become equal at a finite set of time values;
and (iii) if h(u, t0) = h(v, t0) then the function h(u, t)− h(v, t) changes sign at t = t0.

Edelsbrunner et al. [12] showed that if h is a smooth function, then the topology of T
changes at time t if (i) a critical point u becomes degenerate (i.e., the Hessian at u becomes
singular), or (ii) two saddle points u and v lie on the same contour. In either case, an
edge (u, v) of T is degenerate in the sense that the interval [h(u, t), h(v, t)] is a single point.
In our setting, where h(·, t) is a piecewise-linear function, the two corresponding events are:
(i) two adjacent vertices u and v with h(u, t) = h(v, t), and one of them is a saddle and the
other is an extremal vertex just before or after the event; (ii) two saddle vertices lie on the
same contour. The former event is called a birth or a death event, and the latter is called an
interchange event.

Besides these two events, there is another event in the piecewise-linear case, namely, a
critical point shifts from one vertex to its neighbor — no new critical points are created, none
is destroyed, and the topology of T does not change. Only the label of a node in T changes.
We refer to this event as a shift event. We will refer to events occurring when the heights of
two neighboring vertices become equal as local events. We note that an interchange event
can also occur when the height of two adjacent vertices becomes equal, so a local event may
correspond to an interchange event as well.

If an event occurs at time t, then we refer to t− (resp. t+) as the time t− ε (resp. t+ ε)
for some arbitrarily small ε > 0.

Local events. Suppose a local event occurs at time t0 at which h(v, t0) = h(u, t0), where u
is a neighbor of v. For simplicity, we assume that h(v, t−0) < h(u, t−0) and h(v, t+0) > h(u, t+0).
The case when h(v, t−0) > h(u, t−0) is symmetric. In the following sections we describe in
detail the changes that occur in T during the three kinds of local events. We assume the
interval [t−0 , t

+
0] to be sufficiently small so that there is no other vertex whose height lies

between those of u and v during this interval.

Shift event. A shift event occurs at t0 if one of u and v, say v, was a critical vertex and
the other vertex, u, was a regular vertex at t−0 , and the critical vertex shifts from v to u at
t+0 . This event does not cause any change in the topology of T but the node of T that was
labeled v changes its label to u.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 801

Shift event Birth / death event

(a) v u v u

shift
v u v u

birth

death

(b) v u v u

shift
birth

death
v u v u

(c) v u v u

shift
v u v u

birth

death

Figure 3 Illustration of local events: (a) v is a minimum vertex; (b) v is a regular vertex; (c) v is
a saddle vertex. Hollow vertices are higher than u and v, and filled vertices are lower than u and v.
In all examples v is raised, i.e., h(v, t−0) < h(u, t−0) and h(v, t+0) > h(u, t+0).

α

β

α

β

u

v

ρ(v)

ρ(u) α

β
v

u

birth

death

Figure 2 Illustration
of the change in the topol-
ogy of the contour tree in
birth/death events.

Birth/death event. A birth event occurs at time t0 if both u and
v were regular vertices at t−0 , and they become critical vertices at
t+0 . A death event occurs when both u and v were critical vertices at
t−0 and become regular vertices at t+0 . See Figure 2 for the change
in the topology of T. We now describe in detail how T changes at a
birth event; a death event is similar. There are two possibilities: (i)
v becomes a negative saddle and u a minimum, or (ii) v becomes
a maximum and u a positive saddle. Suppose ρ(u), ρ(v) lie on the
edge (α, β) of T. Then we split (α, β) into two edges by adding
a node corresponding to the new saddle and creating a new edge
incident on this node whose other endpoint is a leaf. In case (i), v
is the node added on the edge (α, β) and u is the new leaf, and in
(ii) u is the node on (α, β) and v is the new leaf.

A local event that corresponds to an interchange event is described in the next subsection.
Using an exhaustive case analysis (omitted from this version), it can be shown that the above
description includes all possible changes in the contour tree that may be caused by a local
event. See Figure 3.

3.1 Interchange events

An interchange event occurs at time t0 if two saddle vertices α, β lie on the same contour,
i.e., ρ(α) = ρ(β), at time t0. Suppose h(α, t−0) < h(β, t−0). There are four cases, depending
on whether α and β are positive or negative saddles. Let us assume that α is a negative
saddle. (As we will see below the case when α is positive can be reduced to this case by
reversing the z-axis and/or time axis.) Then there are two cases: (i) α is negative and β is
positive , and (ii) both α and β are negative saddles. We refer to them as mixed and negative
interchange events, respectively. We need a few notations to describe the interchange events.

At time t−0 all contours in the equivalence class (α, β) are combinatorially identical
because ρ(w), for any vertex w of M, does not lie on the interior of the edge (α, β) of T.

SoCG’15

802 Maintaining Contour Trees of Dynamic Terrains

T Contours T
t−0 t−0 t0 t+0 t+0

(a) βα βα βα
α

β

ξ η

ω ζ

(b) α
β

ξ η

ω ζ

α β α β α β

α

β
η

ξ
ω

ζ

(c) α β α β α β
α

βξ
η

ω

ζ

Figure 4 Illustration of topological changes in M` and contour tree transitions during a mixed
interchange event. Dashed contour lines are contours of α and solid contour lines are contours of β
at time t−0 and t+0 ; each of them consists of two simple cycles. The two contours merge into one
contour at time t0 (middle column). (a) a sign change event, (b) a blue event, (c) a red event.

With a slight abuse of notation, we will therefore simply refer to all contours in the class (α,
β) as the contour C− without specifying a height. Similarly, at time t+0 , all contours in the
class (β, α) are combinatorially identical, and we refer to them as C+. We label the vertices
of C− and of C+ that lie on edges incident to α (resp. β) with α (resp. β).

Mixed interchange event. In this case, α is negative and β is positive. We assume that
the edge (α, β) is blue at t−0 , so both α and β are blue at t−0 (see Section 2). The case when
(α, β) is red reduces to this case by reversing the direction of the z-axis. Let ξ and η be the
two down neighbors of α, and let ζ, ω be the up neighbors of β at time t−0 . Since α is blue,
both (ξ, α) and (η, α) are blue edges. Since β is blue, one of (β, ζ) and (β, ω) is red and the
other is blue (See Figure 1). Assume that the edge (β, ζ) is blue and (β, ω) is red, i.e., the
up-contour C−ω of β is red and the up-contour C−ζ of β is blue. Refer to Figure 4.

Since α is a negative saddle, β is a positive saddle, and C− intersects both components
of Lk+(α) and of Lk−(β), the vertices of C− labeled with α form two disconnected intervals
in C−, and the same is true for vertices labeled with β.1 Since β is the only vertex between
C− and the up-contours C−ζ and C−ω of β, every vertex of C− either lies on an edge of
E(C−ζ) ∪ E(C−ω) or is labeled with β. We mark the vertices of C− that lie on the edges of
E(C−ω) as red and the vertices that lie on the edges of E(C−ζ) as blue, in accordance with the
colors of the contours C−ω and C−ζ , respectively. Refer to Figure 5. Similarly, let C−ξ and C−η
be the down-contours of α, then every vertex of C− either lies on an edge of E(C−ξ) ∪ E(C−η)
or is labeled with α. There are three types of mixed interchange events depending on the
relative positions of the vertices of C− that are marked α or β. See Figure 5.

1 If α and β are adjacent in M, there is a vertex of C− (the intersection point of C− with the edge αβ of
M) that is marked both α and β. In this case, we simply consider vertices marked only α (resp. β). It
can be shown that β is an endpoint of a connected component of Lk+(α) and that component contains
more than one vertex. Therefore the vertices of C− marked only α form two disconnected intervals in
C−, and a similar argument applies to β.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 803

α
β

C−

α

β

C−

α β
C−

(a) (b) (c)

Figure 5 Illustration of the possible colorings of C− for mixed interchange events. α is a negative
saddle and β is positive. Green (resp. purple) contour vertices represent the vertices marked with α
(resp. β). Hollow vertices of M have height higher than both α and β, and filled vertices have lower
height. Blue dashed lines indicate C−ζ , and red dash lines C−ω . (a) Vertices marked α in C− lie on
the edges of both E(C−ζ) and E(C−ω), (b) vertices marked α lie on the edges of E(C−ζ), (c) vertices
marked α lie on the edges of E(C−ω).

(i) Vertices marked α and β in C− are interleaved, i.e., vertices marked α are both red
and blue; we refer to this as a sign-interchange event.

(ii) All vertices marked α are blue; we refer to this as a blue event.
(iii) All vertices marked α are red; we refer to this as a red event.

In case (ii) and (iii), all vertices marked β lie in one of E(C−ξ) and E(C−η). Without
loss of generality, assume that they lie on the edges of E(C−η). The following lemma then
characterizes the change of T at a mixed interchange event.

I Lemma 2. Suppose a mixed interchange event occurs at time t0 involving an edge (α, β) of
T. If the edge (α, β) is blue at t−0 and h(α, t−0) < h(β, t−0), then the following change occurs
in T at t0:
(i) Sign-interchange event: The topology of T does not change. The only change in T is

that the label α and β of T get swapped, i.e., the edge (α, β) becomes (β, α), and α (resp.
β) becomes a positive (resp. negative) saddle at t+0 ; Figure 4 (a).

(ii) Blue event: The edge (α, β) becomes (β, α) but the color of (β, α) and of the saddles
α, β remain blue. At time t+0 , η is the down neighbor of β, α and ω are the up neighbors
of β, ξ and β are the down neighbors of α, and ζ is the up neighbor of α; Figure 4 (b).

(iii) Red event: The edge (α, β) becomes (β, α), and its color becomes red and so does the
saddle α. At time t+0 , η is the down neighbor of β, α and ζ are the up neighbors of β, ξ
and β are the down neighbors of α, and ω is the up neighbor of α; Figure 4 (c).

Proof. Consider the sign-interchange event. Let C−ξ , C−η and C−ζ , C−ω be the down-contours of
α and the up-contours of β at time t−0 , respectively. Let `↓ = h(α, t−0)−ε and `↑ = h(β, t−0)+ε
be the levels of the down-contours of α and of the up-contours of β, respectively. We can
choose the values of t+0 and ε carefully so that `↑ > h(α, t+0).

First we fix the time t−0 and monitor the contour C− as we decrease the level toward
h(α, t−0). The vertices of C− marked α converge to the vertex α at height h(α, t−0), and we
obtain the contour C−α of α. Since the vertices marked α and β in C− are interleaved, each
of the two simple cycles of C−α contains the vertices marked β (i.e., each of them intersects
the edges incident on β), and therefore so do C−ξ and C−η . Similarly, each of C−ζ and C−ω
contains vertices marked α. Refer to Figure 6 (a).

Next we fix the heights `↓ and `↑ and move forward in time from t−0 to t+0 . As time moves
toward t+0 , C

−
ξ , C−η , C

−
ζ and C−ω continuously deform but no topological changes occur to

any of them. Let us consider the deformation of C−ξ . The deformation can be represented
by a continuous function F : S× [t−0 , t

+
0]→ R2, where F (·, t−0) = C−ξ and F (·, t) denote the

SoCG’15

804 Maintaining Contour Trees of Dynamic Terrains

Height Contours

`↑ =
h(β, t−0)+ε α β

C−
ω

C−
ζ

h(β, t−0) C−
βα β

< h(β, t−0)
> h(α, t−0) α βC−

h(α, t−0) α βC−
α

`↓ =
h(α, t−0)−ε

α βC−
ξ

C−
η

Height Contours

`↑
α β

C+
ω

C+
ζ

h(α, t+0)
C+
α

α β

< h(α, t+0)
> h(β, t+0) β

α C+

h(β, t+0)
β

C+
βα

`↓ α β
C+
η

C+
ξ

(a) t = t−0 (b) t = t+0

Figure 6 Illustration of a sign-change event. The vertices marked α are illustrated as green
vertices and the vertices marked β as purple vertices.

deformation of C−ξ at time t ∈ [t−0 , t
+
0]. By construction, E(F (·, t)) remains the same for all

t ∈ [t−0 , t
+
0]. Let C+

ξ = F (·, t+0). Similarly define C+
η , C+

ζ , and C+
ω . See Figure 6 (b).

Now we fix the time to t+0 and increase the height from `↓ to `↑ and monitor how the
contours C+

ξ and C+
η deform. Recall that h(β, t+0) < h(α, t+0), so as we increase the height,

we first encounter β and the vertices of C+
ξ and C+

η marked β converge to the vertex β of
M. Hence, β is now a negative saddle. Since both C+

ξ and C+
η are blue, so is the saddle β

at t+0 . C+, the up-contour C+ of β at time t+0 , is therefore a blue contour. E(C+) contains
all edges of E(C+

ξ) ∪ E(C+
η) that are not incident on β plus the edges whose lower endpoint

is β (at time t+0). Furthermore the vertices marked α and β in C+ are interleaved (as in
C−). If we continue to increase the height, the vertices of C+ marked α converge to α as we
reach h(α, t+0), and C+ splits into two contours at α. Since C+ is a blue contour, α is a blue
positive saddle at t+0 . The up-contours of α at time t+0 will be C+

ζ and C+
ω , so ζ and ω will be

up-neighbors of α. See Figure 6 (b). This completes the proof for the sign-interchange case.
Next, suppose the red or blue event occurs at time t0. The proof proceeds along the same

lines as for the previous case. Let `↓, `↑, C+
ξ , C+

η , C+
ζ , and C+

ω be the same as above. If
the vertices marked α and β are not interleaved in C−, then by our assumption the vertices
marked β lie on the edges of E(C+

η), these vertices converge to β at height h(β, t+0) and C+
η

splits into two contours at β. Note that as we increase the height C+
ξ also deforms but does

not meet β, as it has no vertices marked β. Hence β is a blue positive saddle, with η as the
down neighbor of β. Let C+

β be the contour of β at time t+0 .
C+
β consists of two simple cycles, one with vertices lying on edges of E(C+

ω) and the other
with vertices lying on edges of E(C+

ζ). As we increase the height to h(α, t+0), the vertices

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 805

T Contours T
t−0 t−0 t0 t+0 t+0

(a) α

β

ξ η

ζ α β α β α β
α

βξ

η ζ

(b) α

β

ξ η

ζ α β α β α β

α

βξ
η ζ

(c) α

β

ξ η

ζ α
β

α
β

α β

α
βξ

η ζ

Figure 7 Illustration of topological changes in M` and contour tree transitions during negative
interchange events. Dashed lines are contours of α and solid lines are contours of β. (a) is when β is
blue. (b) and (c) are when β is red.

marked α in C+ and C+
ξ converge to α, and the two contours merge into a single contour

C+
α at α. If the blue (resp. red) event occurs at t0, i.e., vertices marked α lie on the edges of

E(Cζ) (resp. E(Cω)), then α is a blue (resp. red) negative saddle at time t+0 , the up-contour
of α is C+

ζ (resp. C+
ω), and the contour C+

ω (resp. C+
ζ) remains an up-contour of β. See

Figure 4 (b) and (c). J

The above lemma characterizes the changes in the contour tree at a mixed interchange
event under the assumption that α was a blue negative saddle at t−0 . As mentioned above,
the other cases can be reduced to the above case. In particular, if α is a red negative saddle
at time t−0 , reverse the direction of the z-axis. Now β becomes a blue negative saddle, α a
blue positive saddle, and β lies below α, which is precisely the case described in Lemma 2.
If α is a blue positive saddle, reverse the direction of time and swap β and α (see Figure 4
(b,c)). Finally, if α is red positive saddle, then by reversing the direction of time as well as
that of the z-axis, we reduce this case to that described in Lemma 2.

Negative interchange event. Let ξ, η be the two down neighbors of α at t−0 , and let ζ be
the other down neighbor of β (α is a down neighbor of β at t−0). See Figure 7. The change in
topology of T at a negative interchange event is similar to performing a rotation at node β.
That is, the edge (α, β) becomes the edge (β, α) at time t+0 , and one of the down subtrees of
α (rooted in ξ and η) becomes a down subtree of β. Next we describe the change of T in
more detail.

Let C−ξ and C−η be the down-contours of α at time t−0 . Since both α and β are negative
saddles and C− is the up-contour of α and one of the down contour of β (at time t−0), the
vertices of C− labeled α form two disconnected intervals and those labeled β form a single
connected interval. Since α is the only vertex between C− and the down-contours of α,
vertices of C− either lie in the interior of an edge in E(C−ξ) ∪ E(C−η), or is labeled with α.
Furthermore the vertices of C− marked β form a connected interval, the edges incident on β
that intersect C− belong to one of E(C−ξ) and E(C−η) but not both. Using these observations,

SoCG’15

806 Maintaining Contour Trees of Dynamic Terrains

Figure 7 illustrates different possible cases at a negative interchange event. Lemma 3 below
describes how the topology of T changes. Its proof is similar to that of Lemma 2 and is
omitted from this version.

I Lemma 3. If the vertices of C− labeled β lie on the edges of E(C−η), then at time t+0 , η
becomes a down neighbor of β, ζ the other down neighbor of β, and ξ and β become the down
neighbors of α.

Figure 7 also illustrates how the colors of α and β change at t+0 . Indeed, if β is blue at t−0
then α is also blue at t−0 , and both of them remain blue at t+0 (Figure 7 (a)). If β is red, then
α is blue or red. Suppose α is red. If η is red at t−0 (recall we assume that the edges incident
to β that intersect C− belong to E(C−η)), then both α and β remain red at t+0 (Figure 7 (b)).
But if η is blue at t−0 then α remains red but β becomes blue at t+0 (Figure 7 (c)). Finally, if
β is red and α is blue at t−0 , then this corresponds to third case if we reverse the direction of
the time axis (see Figure 7 (c), with the roles of α and β being swapped).

4 KDS for T

In this section, we describe an algorithm for maintaining the contour tree as the height
function varies over time, using the KDS framework by Basch et al. [5]. The KDS framework
maintains a set of certificates that ensure the correctness of the configuration. As the objects
move, the certificates fail at certain time instances, called events. For each certificate, the
closest time that the certificate fails is computed and maintained in an event queue. When
the current time reaches the time of the next event in the event queue, a repair mechanism
is invoked to update the configuration, the set of certificates, and the event queue.

We represent the time-varying height function by specifying the height of each vertex
v ∈ V as a function fv : R→ R of time. We assume that each fv is a polynomial and that
the maximum degree of these polynomials is bounded by a constant. We also assume that the
set {fv | v ∈ V } is generic in the sense described in the beginning of Section 3. We describe
the algorithm in the real-RAM model [8], in which various operations on constant-degree
polynomials (e.g., finding the roots) can be performed in O(1) time.

Data structure. To maintain T efficiently, we also maintain: (i) a descent tree Π↓(x) for
every minimum x; (ii) an ascent tree Π↑(y) for every maximum y; (iii) for every non-extremal
vertex v, a link pointer to the first vertex of each connected component of Lk−(v) and
Lk+(v), in clockwise order. We store M using a standard triangulation data structure such
as DCEL [7]. We maintain an event queue as a priority queue so that the next event can be
computed efficiently. We represent the contour tree, the ascent trees, and the descent trees
as link-cut trees [16], which support each of the following operations in O(logn) time.

Link(v, w): Given two vertices v, w, connect the trees containing v and w by inserting
the edge (v, w).
Cut(v, w): Given v, w, split the tree containing v and w by removing the edge (v, w).
Root(v): Return the root of the tree containing v.
Expose(v, w): Return a pointer to a balanced binary search tree storing vertices on the
path P from v to w in the order as they appear on P .

These operations enable the following operations on T: (a) NextTo(v, w): Given two
critical vertices v and w, return the vertex adjacent to v in T on the path from v to w. (b)
FindEdge(v): For a regular vertex v, return the edge (α, β) of T that contains ρ(v).

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 807

NextTo is straightforward and takes O(logn) time. FindEdge(v) is implemented as
follows. Using Root(v) on the ascent trees and the descent trees, we find the minimum x

and the maximum y such that v ∈ Π↓(x) and v ∈ Π↑(y). By Lemma 1, (α, β) is on the path
P between x and y in T, and the heights of the vertices on P are monotone. We obtain P
using Expose(x, y) and then find (α, β) on P . This procedure takes O(logn) time.

Certificates. Each edge in an ascent/descent tree is an edge of M and the link pointers also
correspond to the edges of M, so these auxiliary structures change only when the heights
of two endpoints of an edge become equal. The time instance at which an ascent/descent
tree or a link pointer needs to be updated is referred to as auxiliary event. As described
in Section 3, T changes only when the heights of the endpoints of an edge of M or of T
become equal. Hence, our KDS maintains the following two sets of certificates to certify the
correctness of the structures at any given time: (i) a certificate for each edge (u, v) of M,
that fails when h(v, t) = h(u, t), corresponding to a local event; and (ii) a certificate for each
edge (α, β) of T that fails when h(α, t) = h(β, t), corresponding to an interchange event.

Initialization. We initialize by constructing T at time zero, using the static algorithm [9],
in O(n logn) time. The ascent/descent trees and the link pointers can be initialized in
O(n logn) time. Finally, we initialize the event queue with the certificates associated with
edges of M and T.

Repair mechanism. We now describe how we update the KDS at each event. Besides
T, we also have to update the auxiliary structures and the event queue. First consider a
local event at time t0 at which h(v, t0) = h(u, t0), where (u, v) is an edge of M. Assume
that h(v, t−0) < h(u, t−0) and h(v, t+0) > h(u, t+0). This event may be an auxiliary, shift,
birth/death, or an interchange event (or multiple of them). Processing a shift event is
straightforward as it only involves updating the label of a node of T (see Section 3) and the
certificates, along with their failure times, for the edges of T adjacent to that node of T. We
will describe the processing of an interchange event later, so we briefly sketch the processing
of auxiliary and birth/death events.

Birth/death event. Suppose u, v were regular vertices at t−0 and become critical vertices at
t+0 . We find the edge (α, β) of T that contains u, v using the FindEdge(u) operation.
Once we know (α, β), T can be updated in O(logn) time, using Link and Cut operations.
Finally, we update the certificates and their failure times corresponding to the new edges
in T. Processing a death event is similar but simpler since u, v are vertices of T at t−0 .

Auxiliary event.] Updating the link pointers of u and v is straightforward. Next suppose
(v, u) is an edge of an ascent tree at t0. We remove the edge (v, u). If v becomes a
maximum at t+0 , then v becomes the root of an ascent tree; otherwise we choose another
vertex w from Lk+(v) and add the edge (v, w). If u was a maximum at t−0 , i.e., u was
the root of an ascent tree, we add the edge (u, v). These changes in the ascent tree can
be performed in O(logn) time using Link, Cut, and Root operations. A descent tree
is updated in an analogous manner.

Interchange event. We describe how to process a mixed interchange event; other interchange
events can be processed similarly. Following the set up in Section 3, suppose a mixed
interchange event occurs at t0 at which h(α, t0) = h(β, t0) with h(α, t−0) < h(β, t−0), α
being a blue negative saddle at t−0 , and β being a blue positive saddle at t−0 . Once we
know whether this event is sign-interchange, blue, or red event, we can update T in
O(logn) time in accordance with the characterization of events in Lemma 2.

SoCG’15

808 Maintaining Contour Trees of Dynamic Terrains

Borrowing the notation from Section 3, let ζ, ω be the two up neighbors of β at t−0 with
(β, ζ) being blue and (β, ω) being red. Similarly let C− be a contour of the edge (α, β),
C−ζ (resp. C−ω) the up-contour of β corresponding to the edge (β, ζ) (resp. (β, ω)). The
vertices of the contour C− labeled α consist of two disconnected intervals, say, I1 and I2,
each corresponding to one connected component of Lk+(α) at t−0 . We also note that all
edges of E(C−) that contain the one connected interval of vertices of C− marked α belong
to E(C−ζ) or E(C−ω) but not both. For each of I1 and I2, we determine which of the two
sets, E(C−ζ) or E(C−ω), these edges belong to. Consider I1 and choose an arbitrary vertex
from this interval. Suppose this vertex lies on the edge (α, u1) ∈M; u1 can be identified
using the link pointers of α. Using the Root(u1) procedure, we determine the maximum
y such that u1 ∈ Π↑(y). Consider the path Pβy from β to y in T. Let γ1 ∈ {ζ, ω} be the
vertex next to β in Pβy; γ1 can be determined by calling NextTo(β, y). Then the edge
(α, u1) ∈ E(C−γ1

). Similarly we choose a vertex u2 from the other component of Lk+(α)
and find the vertex γ2 ∈ {ζ, ω} such that (α, u2) ∈ E(C−γ2

). If γ1 6= γ2, then the event at
hand is a sign-interchange event, if γ1 = γ2 = ζ then it is a blue event, and if γ1 = γ2 = ω

then it is a red event. The total time spent in computing γ1 and γ2 is O(logn).
Hence, a mixed interchange event can be processed in O(logn) time. Similarly other
interchange events can be processed in O(logn) time.

KDS analysis. The shift, birth/death, and interchange events are external events as they
change T, and the auxiliary events are internal events as they only change auxiliary data
structures and do not affect T. Since auxiliary events are local events, the number of internal
events is O(n). Hence, the KDS processes O(κ+n) events, where κ is the number of external
events. Each certificate of the KDS is associated with an edge of M or T, so it maintains
O(n) certificates at any time. Each event will cause the update of O(1) number of certificates.
The maximum number of certificates in which any one vertex can ever appear is bounded
by the degree of the vertex in M. Although the degree of a vertex in M can be Ω(n) in the
worst-case, it is often a small constant in practice.

I Theorem 4. Let M be a triangulation of R2 with n vertices, and h : M × R → R a
time-varying height function such that the height of each vertex of M, as a function of time,
is specified by a polynomial whose maximum degree is bounded by a constant. The contour
tree of h can be maintained by a linear-size KDS that processes O(κ+ n) events, where κ
is the number of external events. The KDS processes each event in O(logn) time in the
real-RAM model.

I Remark. (i) It is easy to construct a height function so that the number of combinatorial
changes in T is Ω(n2). As the worst-case number of internal events is much smaller than
the worst-case number of external events, our KDS is weakly efficient in the terminology
of KDS [14]. (ii) If the maximum degree of a vertex is large, our KDS can be modified so
that a vertex appears in O(logn) certificates, but the number of internal events increases
to O(λs(n) logn), where s is a constant and λs(·) is the maximum length of an order s
Davenport-Schinzel sequence and is almost linear [2]. Each event now takes O(log2 n) time
to process.

5 Extensions

In this section, we describe kinetic data structures for maintaining the augmented contour
tree and join/split tree.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 809

Augmented contour tree. Recall that the augmented contour tree TA is obtained by adding
to the edges of T the images of regular vertices of M under the quotient map ρ. We refer to
these newly added degree two vertices in TA as regular vertices as well, while the original
vertices of T are called critical vertices. We can easily modify the KDS framework described
in Section 4 to maintain this augmented contour tree TA. We provide a brief description
below.

Specifically, the only new events that we need to handle are (regular-regular event): when
two regular vertices u, v lie on the same contour, and (regular-critical event): when a regular
vertex u and a critical vertex v lie on the same contour. Note that (u, v) is an edge of TA in
both cases. When a regular-regular event happens, there are two possibilities: (i) either u
and v swap their order along the edge (u, v); or (ii) it causes a birth event, in which case
(u, v) is also necessarily an edge in M.

At a regular-critical event at time t0, there are two cases: (i) u is a regular vertex and v
is an extremal vertex. In this case, it is easy to verify that (u, v) has to also be an edge in
M, and it corresponds to a shift event. (ii) u is a regular vertex and v is a saddle vertex. If
it does not correspond to a shift event, we need to identify which edge incident on v in TA
contains u after the event. Assume h(u, t−0) < h(v, t−0), and let w be a vertex in Lk+(u). It
is easy to see that w and u are in the same connected component in M>(h(v,t+0)) at time
t+0 . Thus, u is moved onto the incident edge of v whose endpoint is the one obtained by
NextTo(v, y), where Π↑(y) contains w. If h(u, t−0) > h(v, t−0), we consider w as a vertex in
Lk−(u) and use the descent trees.

The additional events can be clearly handled in O(logn) time. Note that when a local
event associated with an edge (u, v) of M occurs, there is an edge (u, v) in TA and thus
certificates associated with edges of M are unnecessary. Each certificate failure makes a
combinatorial change in TA. Therefore, this data structure is strongly efficient.

I Theorem 5. Let M be a triangulation of R2 with n vertices, and h : M × R → R a
time-varying height function such that the height of each vertex of M, as a function of time,
is specified by a polynomial whose maximum degree is bounded by a constant. The augmented
contour tree of h can be maintained by a linear-size KDS that processes O(κ) events, where
κ is the number of external events. The KDS processes each event in O(logn) time in the
real-RAM model.

Join and split trees. As described, the contour tree T encodes the topological changes in
M` as we increase ` from −∞ to ∞. The join tree encodes the topological changes in M<`.
As we increase ` from −∞ to ∞, connected components in M<` appear at minimum vertices
and merge at negative saddle vertices, but they never split or disappear as components never
shrink. In the join tree, only minimum vertices and negative saddle vertices appear as nodes.
Similarly, the split tree encodes the topological changes in M>`, in which only maxima and
positive saddles appear as nodes. As the join and split trees contain a subset of nodes in
the contour tree, the events that occur on these trees of time-varying height functions are
a subset of the events that occur on the contour tree. For example, the events that occur
on the join tree are the events that involve the minima and negative saddle vertices, i.e.,
the negative interchange events, sign-interchange change events and a subset of the local
events. The algorithm described above can therefore also be used to maintain the join and
split trees, the only difference being the reduced set of events. Note that to be able to detect
the sign-interchange events efficiently, we need to maintain T simultaneously with the join
tree J or augment the positive saddle vertices to the edges of J.

SoCG’15

810 Maintaining Contour Trees of Dynamic Terrains

I Theorem 6. Let M be a triangulation of R2 with n vertices, and h : M × R → R a
time-varying height function such that the height of each vertex of M, as a function of time,
is specified by a polynomial whose maximum degree is bounded by a constant. The join tree
and the split tree of h can be maintained by a linear-size KDS that processes O(κ+ n) events,
where κ is the number of events at which the contour tree of h changes. The KDS processes
each event in O(logn) time in the real-RAM model.

6 Conclusion

In this paper, we characterized the combinatorial changes in the evolution of the contour
tree of a time-varying piecewise linear height function over R2, and described the first KDS
for maintaining the contour tree that efficiently handled such changes. Adapting this KDS,
we also presented how to maintain the augmented contour tree and join/split tree.

Our analysis of events and our KDS are limited to a height function on simple 2-manifolds.
A natural question of course is to extend this analysis and the KDS to a height function
on higher dimensional space, say, a simple 3-manifold. A more challenging question is to
develop an efficient KDS for maintaining the Reeb graph of a function over a 2-manifold
with non-zero genus. Finally, another interesting question is to design a KDS for maintaining
the contour tree when not only the height function changes with time but M itself changes
over time.

References
1 P. K. Agarwal, L. Arge, T. M. Murali, Kasturi R. Varadarajan, and J. S. Vitter. I/O-

efficient algorithms for contour-line extraction and planar graph blocking. In Proc. 9th
ACM-SIAM Sympos. Discrete Algorithms, pages 117–126, 1998.

2 P. K. Agarwal and M. Sharir. Davenport-Schinzel sequences and their geometric appli-
cations. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational
Geometry, pages 1–47. Elsevier Science Publishers, 2000.

3 Pankaj K. Agarwal, Lars Arge, and Ke Yi. I/O-efficient batched union-find and its appli-
cations to terrain analysis. In Proc. 22nd Annu. Sympos. Comput. Geom., pages 167–176,
2006.

4 Lars Arge, Morten Revsbæk, and Norbert Zeh. I/O-efficient computation of water flow
across a terrain. In Proc. 26th Annu. Sympos. Comput. Geom., pages 403–412, 2010.

5 J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. J. Algorithms,
31(1):1–28, 1999.

6 K.G. Bemis, D. Silver, P.A. Rona, and C. Feng. Case study: a methodology for plume
visualization with application to real-time acquisition and navigation. In Proc. IEEE Conf.
Visualization, pages 481–494, 2000.

7 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
Geometry: Algorithms and Applications. Springer-Verlag, 3rd edition, 2008.

8 Vasco Brattka and Peter Hertling. Feasible real random access machines. J. Complexity,
14(4):490–526, December 1998.

9 Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions.
Comput. Geom., 24(2):75–94, 2003.

10 Hamish Carr, Jack Snoeyink, and Michiel van de Panne. Flexible isosurfaces: Simplifying
and displaying scalar topology using the contour tree. Comput. Geom., 43(1):42–58, 2010.

11 A. Danner, T. Mølhave, K. Yi, P. K. Agarwal, L. Arge, and H. Mitásová. Terrastream: From
elevation data to watershed hierarchies. In Proc. ACM Sympos. Advances in Geographic
Information Systems, page 28, 2007.

P.K. Agarwal, T. Mølhave, M. Revsbæk, I. Safa, Y. Wang, and J. Yang 811

12 Herbert Edelsbrunner, John Harer, Ajith Mascarenhas, Valerio Pascucci, and Jack
Snoeyink. Time-varying Reeb graphs for continuous space-time data. Comput. Geom.,
41(3):149–166, 2008.

13 L. Guibas. Modeling motion. In J. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages 1117–1134. Chapman and Hall/CRC, 2nd
edition, 2004.

14 Leonidas J. Guibas. Kinetic data structures – a state of the art report. In Proc. Workshop
Algorithmic Found. Robot., pages 191–209, 1998.

15 N. Max, R. Crawfis, and D. Williams. Visualization for climate modeling. IEEE Comput.
Graphics and Appl., 13:34–40, 1993.

16 Daniel D. Sleator and Robert E. Tarjan. A data structure for dynamic trees. J. Comput.
Sys. Sci., 26(3):362–391, 1983.

17 B. S. Sohn and Bajaj C. L. Time-varying contour topology. IEEE Transactions on Visual-
ization and Computer Graphics, 12(1):14–25, 2006.

18 A. Szymczak. Subdomain aware contour trees and contour evolution in time-dependent
scalar fields. In Proc. Conf. Shape Model. and Appl., pages 136–144, 2005.

19 S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3D in O(n logn) steps.
In Proc. 14th Annu. Sympos. Comput. Geom., pages 68–75, 1998.

20 M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees
and small seed sets for isosurface traversal. In Proc. 13th Annu. Sympos. Comput. Geom.,
pages 212–220, 1997.

SoCG’15

	Introduction
	Preliminaries
	Time Varying Contour Tree
	Interchange events

	KDS for T
	Extensions
	Conclusion

