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ABSTRACT
Understanding the impact of climate and land-use on forest
ecosystems involves modeling and simulating complex spa-
tial interactions at many different scales. With this goal
in mind, we have developed an individual-based, spatially
explicit forest simulator, which incorporates fine-scale pro-
cesses that influence forest dynamics. In this paper we
present new, faster algorithms for computing understory
light and for dispersal of seeds — the two most computa-
tionally intensive submodules in our simulator. By exploit-
ing temporal coherence, we circumvent the problem of doing
the entire simulation at each step. We provide experimen-
tal results that support the efficiency and efficacy of our
approach.

Categories and Subject Descriptors
F2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Understanding how forest ecosystems respond to climate

change and how this impacts biodiversity is central to global
change research. Because these phenomena are so complex,
computer based simulation is the only feasible approach to
understand and predict them. Forest responses to climate
change involve complex spatial interactions at many differ-
ent scales, ranging from individual-tree scale to population
scale [2, 12, 13, 14, 20]. At the individual-tree scale, growth
and survival of an individual depends on interactions be-
tween its local environment and climate, as it competes for
light and other resources with neighboring individuals. At
the population scale, responses to climate change are deter-
mined by dispersal of seed to new regions as local climates
become unsuitable for continued survival of the species. Op-
erating at vastly different spatial scales—meters for light
competition and kilometers for population migration—both
processes are slow and interdependent. This necessitates
simulating forest dynamics on a large area at a high resolu-
tion for a long period.

We have developed a scalable landscape inference and pre-
diction (SLIP) model at the scales at which individual trees
interact [7, 11, 16]. In SLIP model, trees grow, reach repro-
ductive maturity, reproduce if mature, and survive; seeds
are dispersed, and germination of new individuals can oc-
cur. A hierarchical Bayes model, SLIP includes known re-
lationships among demographic rates, with parameters and
unknown sources of variation that need inference. Using this
model, we have also built a simulator that constructs pre-
dictive distributions of forest dynamics. Over forty species
compete for light availability and respond to changes in cli-
mate. Estimates for individual growth, survival, matura-
tion, fecundity, and dispersal, provide a full characterization
of individual health and a basis for simulation. A straight-
forward implementation of this model is too slow to allow
for the evaluation of meter to kilometer scale interactions
over decades of forest change.

There are two computationally intense modules in SLIP:
(i) The seed-dispersal module estimates the density of seeds
at every location of the forest. For simplicity, a uniform
grid is laid over the forest, and the (expected) seed den-
sity is computed in each grid cell by computing the inten-
sity of seeds being dispersed from each tree to that cell. If
the forest is composed of A grid cells and has n “mature”
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Figure 1. Canopy maps of the Blackwood site in Duke forest at four years of simulation on a 512m2 site. The tallest trees (brown
colors) are taller than 40 meters and the shortest trees included in the maps are 2 meters high (light green colors).

trees, the running time of the seed-dispersal algorithm is
O(nA); see below for further details. (ii) The understory
light module estimates the total light reaching ground level,
after being attenuated by tree canopies, in each cell. Al-
though the growth of an adult tree is determined by the
area of its canopy exposed to the sky, understory light af-
fects the growth of a tree in its early stages. Computation of
understory light involves solving several instances of a gen-
eralized hidden-surface-removal problem, and is thus quite
expensive.

In [16] we proposed a quad-tree based approximation al-
gorithm for computing seed density at each grid cell. It
computes in O((n+A/µ2) logA) time a µ-approximation of
seed density. As shown in [17], this approximation is reason-
able because even for moderate values of µ (e.g. µ ≤ 0.5),
the error is less than uncertainty/noise in the data and the
process models. We also presented a GPU based algorithm
for computing the understory light [16], which is about two
orders of magnitude faster than a CPU-based algorithm. In
our applications, we choose annual time step and run long-
term simulations, ranging up to a few hundred years. In [16],
the simulator performs the entire computation at each time
step, making it too slow to run for a few hundred years on
landscapes of area larger than a few sq. km. This raises
the question whether the simulation can be expedited by
exploiting temporal coherence and performing the computa-
tion locally at each step, only in those portions of the for-
est where the dynamics has changed significantly since the
last year. For example, understory light in two successive
years does not change in a “saturated” forest with no gap ar-
eas [10]. Similarly, if we ignore the effect of climate change
in successive years, which happens at the regional scale and
can be handled separately, the (expected) seed density in a
cell changes significantly from the previous year only if a tree
falls or becomes “reproductive” (begins producing seeds) in
its neighborhood. In this paper, we describe dynamic algo-
rithms for seed dispersal and understory light computation
that exploit temporal coherence and update the information
quickly. The paper contains two main results.

First, we describe a new algorithm, called the source based
algorithm, for computing the (expected) seed density in each
grid cell. Its running time is O((n/µ2) logA + A). We im-
prove the running time further to O((n/µ2) log(A/n) + A).
To ensure the desired accuracy, the size of grid cells is chosen
to be sufficiently small; the value of log(A/µ) varies in the

range 2-6 in our experiments even for a dense forest, so these
algorithms are faster in practice than the one in [16]. Even
more importantly, unlike the previous algorithm, these al-
gorithms are amenable to dynamic updates. More precisely,
they approximate the (expected) seed density over the entire
forest as a piecewise-linear function, which is represented as
a hierarchy of piecewise-linear functions. The (expected)
seed density in a grid cell can then be computed in O(logA)
time. The hierarchical representation of the function can be
updated in O(log(A)/µ2) whenever a tree dies or a new tree
becomes reproductive.

Next, we define a gap model for understory light in a “sat-
urated” forest. It exploits the facts that understory light is
low and does not vary too much in non-gap areas in a satu-
rated forest and has little impact on the growth of individ-
uals [4, 5, 10], and that only a small portion of a saturated
forest has gaps. We present efficient algorithms for keeping
track of gaps in the forest and computing understory light
inside the gap and the neighboring cells. The value of light in
the non-gap areas of the forest is set using a pre-determined
probabilistic distribution. The light-computation algorithm
presented here uses the CUDA software library [22]. and is
faster than the algorithm in [16].

The paper is organized as follows: Section 2 gives a brief
overview of the model; Section 3 describes the seed-dispersal
module and the algorithm for computing it; Section 4 de-
scribes the gap model, the algorithm for maintaining gaps,
and the GPU algorithm for computing understory light. Sec-
tion 5 discusses our experimental results.

2. MODEL OVERVIEW
The forest model consists of a landscape L and a popula-

tion of trees. A planar region, L is discretized by bounding
it with a square and overlaying a uniform grid M. We as-
sume L = [0, 2L]× [0, 2L], for some positive integer L. M is
a 2L × 2L uniform grid, with each grid cell being 1m × 1m
large. The model uses a hybrid representation for trees —
earlier stages (e.g. seeds and seedlings) are modeled as den-
sities with no physical locations and attributes, and more
advanced stages (e.g. saplings and adults) are modeled as
individuals with physical locations and various physical and
demographic attributes (e.g. diameter, height, crown area,
fecundity). We use T to denote the set of individuals in the
forest. For an individual i ∈ T, let λ(i) ∈ M denote the cell
that contains i. For a cell j ∈ M, let Tj = {i ∈ T | λ(i) = j}



denote the set of individuals in cell j. Set n = |T| to be
the number of trees in the forest and A = 4L to be the
number of cells in M. Although the model allows trees of
different species, we assume for simplicity of the notation in
this paper that all trees belong to the same species.

The landscape remains fixed over time, but the population
changes over time. Figure 1 shows the result of simulating a
site from the Duke forest forward in time by 100 years. For-
est dynamics involve three main processes — reproduction,
growth, mortality. New individuals enter the population via
seed production and dispersal of seeds (see dispersal mod-
ule). Based on a stochastic process, seeds die, remain dor-
mant, or germinate. The germinated seeds start growing.
The model assumes individuals are immature when small,
growth occurs each year, and with increasing size, individ-
uals make transition to maturity, after which they begin to
reproduce. The growth of an individual depends on light,
soil moisture, and other parameters. The growth of an adult
tree depends on the area of its canopy exposed to the sky,
called exposed canopy area (ECA), but the growth of a tree
in its early stages depends on the light reaching the ground
at its location, called understory light. The annual growth
accumulates with an associated risk of death, with certain
probability. We describe the seed-dispersal and light mod-
els in the next two sections. We refer the reader to [7] for
details on other parts of our model, which are not modified
in this paper.

3. SEED DISPERSAL
In this section we first describe the seed-dispersal and tree-

fecundity models, then describe an efficient algorithm for
computing seed dispersal over L by exploiting spatial coher-
ence, and finally describe a dynamic algorithm that quickly
updates seed dispersal at each time step using temporal co-
herence.

Dispersal and fecundity models. The seed-dispersal
model estimates the number of seeds, produced by mature
trees, that reach each cell of M. Let qj,t and sj,t denote the
expected seed density and the number of seeds dispersed,
respectively, in cell j ∈ M at time t. The latter is computed
from the former using a Poisson distribution

sj,t = Poisson(qj,t).

The expected seed density, qj,t, is the total intensity of seeds
that arrive at cell j from all (mature) individuals in L, and
it depends on two factors:

Dispersal Kernel: spatial distribution of seeds produced
by individual i, i.e., the probability of a seed being dispersed
at a particular distance; denoted by K. Based on empirical
analysis[9], it is chosen to be a 2-dimensional Student’s t-
distribution:

K(r) = 1

ffi
πu

»
1 +

r2

u

–2

. (1)

Here K is isotropic, but it may depend on the slope of L in
mountainous regions.
Fecundity: volume of seeds produced by an individual i at
time t, denoted by fi,t. Based on empirical analysis [7], the
functional form for fi,t is chosen to be

ln fi,t =β0 + β1 · lnDi,t−1 + β2 · ln2Di,t−1+ (2)

β3 · lnλi,t−1 + β4 · ln di,t−1 + κt + bi + εi,t,

where β0, . . . , β4 are constants that depend on the species
of i; Di,t−1 is the diameter of i at time t − 1; λi,t−1 is
the exposed canopy area (ECA) of i at time t − 1, i.e., the
portion of the canopy of i that is visible from z = +∞;
di,t−1 = Di,t−1 −Di,t−2 is the growth (diameter increment)
of individual i at time t−1; κt, called year effect and drawn
for each year from a probability distribution, models the
inter-annual variation on a regional scale (e.g., climate vari-
ation); bi, called random individual effect and drawn for
each individual independently from a probability distribu-
tion (but does not change over time), models individual
variation; εi,t, called process error and modeled as a nor-
mal distribution, depends on individual and changes every
year. The seed density in cell j is

qj,t =
X
`∈M

X
i∈T`

fi,t K(‖`− j‖). (3)

Here ‖`− j‖ is the distance between the centers of the cells
` and j. For simplicity of presentation, we use L∞-metric
in this paper, but the algorithm is implemented using Eu-
clidean distance.

A straightforward implementation of computing qj,t for
all cells in M takes Ω(nA) time at each time step t. This is
computationally expensive and makes the simulations quite
slow even on moderate size landscapes (e.g. 256m× 256m).
In the next subsection we describe a faster algorithm that
expedites the computation at a slight loss in accuracy.

Computing seed density. The improved algorithm relies
on the observation that the contribution of an individual i
far away from cell j to the quantity qj,t remains almost the
same if λ(i), the location of the cell containing i, varies a
little. Similar ideas have been used in molecular dynam-
ics, computational physics, approximate nearest-neighbor
searching, and other geometric problems [1, 24, 18, 19], but
new ideas are needed for our application.

We build a quad-tree T on M. Recall that M is a 2L × 2L

grid with each cell size being 1m × 1m. The quad-tree has
L levels, with M being level 0. For 0 ≤ i ≤ L, let Mi denote
the 2L−i× 2L−i grid induced by the ith level of T; each grid
cell in Mi has size 2i × 2i. For a cell j ∈ Mi, let p(j) be the
parent cell of j in Mi+1, i.e., the cell of Mi+1 that contains
j. For ∆ ≥ i, let p∆(j) denote the ancestor cell of j in M∆;
j is called a descendant cell of p∆(j). For a cell j ∈ Mi,
let Tj,t denote the set of individuals in cell j at time t. For
simplicity, if the time step t is not important or obvious from
the context, we will drop the subscript t. We introduce a
parameter µ, called monopole coefficient. Let k be a cell in
M∆ and j a cell in M. We say that k satisfies the monopole
condition with respect to j if ∆ = 0 or ‖j − k‖ ≥ 2∆/µ,
where ‖j − k‖ is the distance between the centers of cells j
and k (in the L∞-metric); see Figure 2 (a). If k satisfies the
monopole condition, we approximate the distance between
j and any point in k with ‖j − k‖ which ranges between
(2∆/µ)(1± µ/2). We use this approximation in two ways:

(A1) We assume that the density of seed in cell k ∈ M∆

arriving from an individual i in cell j is uniform; for
any descendant cell ` ∈ M of k, the density is given
by fi K(‖j − k‖) (instead of fi K(‖j − `‖)). Using a
Taylor series expansion of (1) it can be seen that this
introduces a relative error of at most 2µ in the seed
density computation.

(A2) To compute the contribution of all individuals in Tk
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Figure 2. (a) Monopole condition. (b) A cell j and its neighborhood at different levels: cells in N(j, 2) (pink), N(j, 1) (yellow),
N(j, 0) (blue); (c) N−1(p2(j)) (pink), N−1(p1(j)) (yellow), N−1(p0(j)) (blue).

to the seed density qj in grid cell j, we cluster all in-
dividuals in k as a single super individual, located at
the center of k. The fecundity of this super individual,
denoted ϕk, is ϕk =

P
i∈Tk

fi. The contribution of

Tk to qj is approximated by ϕk K(‖j − k‖) (instead ofP
i∈Tk

fi K(‖λ(i) − j‖); this also introduces a relative
error of at most 2µ in the seed density computation.

For a cell j ∈ M and for 0 ≤ ∆ < L, let N(j,∆), called
∆-neighbors, be the set of cells k ∈ M∆ that satisfy the
monopole condition but their parent cells do not satisfy the
condition. That is, for ∆ = 0, N(j,∆) is the set of cells k
for which p(k) is within distance 2/µ from j; for ∆ > 0,

‖k − j‖ ≥ 2∆/µ and ‖p(k)− j‖ < 2∆+1/µ.

See Figure 2 (b). The distance between j and all cells in
N(j,∆) is at most 2∆(1 + 2/µ). Since the size of each cell
in N(j,∆) is ∆, |N(j,∆)| = O(1/µ2). By construction, for
each cell ` ∈ M, there is exactly one value of ∆ such that
p∆(`) ∈ N(j,∆).

For a cell k ∈ M∆, let N−1(k) = {` ∈ M | k ∈ N(j,∆)};
see Figure 2 (c) and let

η(k) =
X

`∈N−1(k)

X
i∈T`

fi K(‖`− k‖). (4)

Since ‖k − `‖ ≥ 2∆/µ for all ` ∈ N−1k, by (A1), we can as-
sume that the seed density in k is uniform for any individual
lying in a cell of N−1(k). We can therefore rewrite (3) as

qj =
X
∆≥0

X
`∈N−1(p∆(j))

X
i∈T`

fi K(‖`− p∆(j)‖) (5)

=
X
∆≥0

η(p∆(j)).

Intuitively, we cluster the cells of M so that p∆(j) is the
highest ancestor of j that satisfies the monopole condition
for all cells within each cluster. This immediately gives an
algorithm, summarized in Figure 3, for computing the seed
density of each cell: We first compute η(ξ,∆) for all ∆ and
for all ξ ∈ M∆, and then compute qj for all j ∈ M in a
top-down manner. In order to implement the second step
efficiently, we extend the notion of qj to cells at higher levels
of quad-tree: for a cell j ∈ M∆, define qj = 0 if ∆ = L and
qj = qp(j) + η(j) if ∆ < L. We compute the quantity qj

in decreasing order of j. Since |N(j,∆)| = O(1/µ2), the
running time of the above algorithm is O((n/µ2) logA+A).

η(j) = 0 ∀∆ ≤ L ∀j ∈ M∆

for i ∈ T
for ∆ = L downto 0
for ξ ∈ N(λ(i), ∆)

η(ξ) = η(ξ) + fi K(‖λ(i)− ξ‖)
for∆ = L downto 0
for j ∈ M∆

qj = qp(j) + η(j)

Figure 3. The first algorithm for computing seed density; λ(i)
is the cell of M containing individual i.

We next improve the running time further using (A2) and
clustering individuals into super individuals. We now extend
the definition of N(·) to the cells at higher levels of T. More
precisely, for ∆ > 0 and for a cell j ∈ M∆, we now define

N(j) = {k ∈ M∆ |‖j − k‖ ≥ 2∆+1/µ

∧‖p(k)− p(j)‖ < 2∆+2/µ}.

For j ∈ M (i.e., ∆ = 0), N(j) is the set of cells k ∈ M \ {j}
that are not covered any N(p∆(j)) for ∆ > 0, i.e., ‖p(j) −
p(k)‖ < 4/µ. Note that, the cells of N(j) now lie at the
same level as j, and that if a, b ∈ M are descendants of j
and of a cell in N(j), respectively, then ‖a− b‖ ≥ 2∆/µ. We
define the set N−1(j) as earlier. For a cell ξ ∈ M∆, we set

ϕ(ξ) =
X
i∈Tξ

fi, η(ξ) =
X

`∈N−1(ξ)

ϕ(`)K(‖`− ξ‖). (6)

(5) can now be rewritten as

qj =
X
∆≥0

X
`∈N−1(p∆(j))

X
i∈T`

fi K(‖`− p∆(j)‖)

=
X
∆≥0

X
`∈N−1(p∆(j))

ϕ(`)K(‖`− p∆(j)‖) =
X
∆≥0

η(p∆(j)).

Figure 4 describes the improved algorithm. For a cell ξ,
if the algorithm executes the step (?) then one of the leaves
in the sub-tree rooted at ξ contains at least one individual.
Using these facts, we can now conclude that the running
time of the algorithm is O((n/µ2) log(A/n)+A). The value
of A/n ranges from 4 to 32 in our experiments.1

1The worst case running time occurs when the trees are
sparse and uniformly distributed. In the scenarios we con-
sider, the forest is either dense or the trees are clustered, so



η(j) = 0 ∀∆ ≤ L∀j ∈ M∆

for ∆ = 1 to L
for ξ ∈ M∆

ϕ(ξ) =
P4

k=1 ϕ(ξi)
if ϕ(ξ) > 0
(?)for j ∈ N(ξ, ∆)
η(j) = η(j) + ϕ(ξ) K(‖j − ξ‖)

for ∆ = L downto 0
for j ∈ M∆

qj = qp(j) + η(j)

Figure 4. Improved algorithm for computing seed density;
ξ1, . . . , ξ4 are the children of ξ.

Exploiting temporal coherence. We can run the above
seed dispersal algorithm at each time step to compute the
seed density of each cell in M. Unless new trees become
mature or some tree dies in a cell j, the total fecundity of
individuals in j does not change much, except possibly due
to the year-effect term in (2). Since this term affects all indi-
viduals uniformly for a specific year, it can be handled sep-
arately. We now describe a data structure for maintaining
the expected seed density at time t, qj,t, approximately that
updates the information locally, instead of re-computing it
using the above algorithm at each time step. More precisely,
we approximate qj,t by a linear function, which is repre-
sented hierarchically and updated periodically as needed.
For simplicity, we first describe the data structure without
the process-error term εj,t in (2), and then describe how this
error term is incorporated. Let gi,t denote the value of fi,t

without the three error terms, i.e.,

ln gi,t =β0 + β1 · lnDi,t−1 + β2 · ln2Di,t−1+ (7)

β3 · lnλi,t−1 + β4 · ln di,t−1.

Including the individual and year effect terms (but still ig-
noring the process-error term), we obtain

fi,t = gi,t exp(bi + κt).

We approximate fi,t by a linear function using Taylor series
with respect to a fixed time t = t0:

fi,t ≈ (gi,t0 + (t− t0)g
′
i,t0) exp(bi) exp(κt),

where g′i,t0 =
dgi,t

dt

˛̨̨̨
t=t0

. We estimate the function g′i,t0

by approximating Di,t−1, λi,t−1 as linear functions of t and
replacing differentials with finite differences, i.e., setting

dDi,t−1

dt
≈ Di,t−1 −Di,t−2 = di,t−1,

ddi,t−1

dt
≈ 0,

dλi,t−1

dt
≈ λi,t−1 − λi,t−2.

We thus obtain

dgi,t

dt
≈ gi,t

„
β1 + 2β2 lnDi,t−1

Di,t−1
di,t−1 +

β3

λi,t−1

dλi,t−1

dt

«
.

the speedup by the improved algorithm is more significant
than suggested by the above expression.

For a cell ξ ∈ M∆, we now define

a0(ξ) =
X

k∈N−1(ξ)

X
i∈Tk

gi,t0 exp(bi)K(‖k − ξ‖), (8)

a1(ξ) =
X

k∈N−1(ξ)

X
i∈Tk

g′i,t0 exp(bi)K(‖k − ξ‖). (9)

By plugging these values in (6), we obtain

ηt(ξ) = exp(κt)(a0(ξ) + (t− t0)a1(ξ),

qj,t = exp(κt)
X
∆≥0

a0(p
∆(j))+

(t− t0) exp(κt)
X
∆≥0

a1(p
∆(j))). (10)

As earlier, we define qj,t recursively: qj,t = qp(j),t+ηt(j). We

maintain the quantities a0(ξ) and a1(ξ) at each cell ξ ∈ M∆.
We choose a time step τ . If t mod τ ≡ 0 we recompute a0, a1

at time step t and set t0 = t. For other values of t, we update
them as follows. Suppose an individual i in a cell j becomes
mature (i.e., starts producing seeds) at time step t1. For all
∆ ≥ 0 and for all cells k ∈ N(p∆(j),∆), we set

a0(k) =a0(k) + (gi,t1 − (t1 − t0)g
′
i,t1) exp(bi)K(‖k − p∆(j)‖)

a1(k) =a1(k) + g′i,t1 exp(bi)K(‖k − p∆(j)‖)

where t0 is the last time step when a0, a1’s were recom-
puted. We update the terms a0, a1 for appropriate cells if
an individual dies at time step t1. The total time spent in
processing an individual is O(log(A)/µ2). Finally, we note
that the process error term εi,t for an individual i is drawn
from a normal distribution, therefore each term in (8), (9) is
multiplied by exp(εi,t), which is a log-normal distribution.
Since the weighted sum of a log-normal distribution can be
approximated as a log-normal distribution (see e.g. [26]), we
modify the two terms in (10) appropriately.

4. UNDERSTORY LIGHT
In this section we describe an improved model for com-

puting understory light, the annual average sunlight from all
directions that reaches each cell of M after being attenuated
by tree canopies; roughly speaking each canopy attenuates
the incoming light by a factor λ, which is chosen based on
field data [10]. As mentioned earlier, understory light in-
fluences the growth of a tree in its early stages [8, 16]. We
first briefly describe the basic understory light model and
the GPU based algorithm for computing it, which was pro-
posed in [15, 16]. We then focus on the improved gap model
and the algorithm for maintaining the gap area.

Light model. We model the sky as a hemisphere H.
Since L spans only a few square kilometers, we assume that
all grid cells in L receive the same intensity of light from
a fixed direction; for larger landscapes (e.g. covering the
entire eastern US), the intensity will depend on the latitude
of a grid cell. The average annual sunlight intensity in each
direction in H can be computed [3, 25]. We discretize the
solar hemisphere by choosing a set Σ = {σ1 . . . , σu} ⊂ H
of directions. Let Ai ⊆ H denote the set of directions for
which σi is the nearest direction in Σ; σi is the representative
direction for all directions in Ai. For each σi, we compute
E(σ), the total light energy emanating from the directions in
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Figure 5. (a) Solar hemisphere, (b) intensity of light in each
direction.

Ai;
2 set E0 =

P
σ∈Σ E(σ). Σ is computed using an adaptive

sampling method, so that the discretization error is as little
as possible.

For a point x ∈ L and a direction u ∈ H, let ρ(x, u) denote
the ray emanating from x in direction u. Let T(x, u) denote
the set of individuals that intersect the ray ρ(x, u). Each
individual τ is modeled as an opaque trunk and a translucent
cylindrical crown on top of the trunk. The light attenuation
of the crown of τ is estimated by a species specific parameter
λτ , which is determined by calibration of the light model to
field estimates of light using canopy photography; see [10].
The fraction of light (intensity) reaching x in direction u is
thus

ψ(x, u) =

8<:
0 if ρ(x, u) intersects a trunk,Y
τ∈T(x,u)

(1− λτ ) otherwise.

(11)
The normalized light energy reaching a grid cell j ∈ M from
direction u is now defined as

`uj = E(u)ψ(cj , u) cosϕ, (12)

where cj is the center of the cell j and ϕ ∈ [0, π/2] is the
zenith angle of direction u (vertical=π/2, horizontal=0).
The set Lu = 〈`uj | j ∈ M〉 is the understory u-light map
of L.

The total light for cell j ∈ M is thus:

`j =
1

E0

X
σ∈Σ

lσj , (13)

and L = 〈`j | j ∈ M〉 is the understory light map of L.

Computing understory light. Computing the under-
story light directly using (11) and (13) is expensive, but
a simple and efficient algorithm exists using GPUs avail-
able on modern PCs, as described in [15]. The algorithm
first computes Lu for each direction u ∈ Σ using the GPU,
stores the data in the GPU memory during the computa-
tion, and transferrs to the main memory before the next
direction is processed. The CPU is then used to compute
the final understory light values using (13).

Unfortunately, transferring data between the GPU and
main memory is slow and the transfer of the Σ buffers, each
with |M| = A light values, becomes the bottleneck of the
algorithm. In this paper we use a modified algorithm that
handles the final computation of L on the GPU itself. This

2Instead of computing the integral over Ai, we choose a
dense grid over H and sum the energy along the grid points
that lie in Ai.

is facilitated by NVIDIAs CUDA software library [22], which
simplifies the implementation of certain algorithms on the
GPU.

We first initialize an empty accumulation buffer A of the
same size as L in the GPU memory. We then compute the
unidirectional light maps one at a time using the previous
algorithm [15]. Following the computation of Lu for u ∈ Σ,
the values of A are updated by adding Lu

j /E0 to each cell Aj

of A. When all the directions have been processed, the value
of each cell Aj is Ll and A is now the final understory light
map L. Thus, we only have to save the final value of A in
main memory. It follows that we only transfer A cells from
the GPU to main memory, instead of the |Σ|A cells trans-
ferred by the previous algorithm. Furthermore the value of
A is updated in parallel on the GPU, removing the need for
the sequential cell-by-cell evaluation of Equation (13) on the
CPU.

The gap model. The light maps computed by our algo-
rithm for saturated forests as well as experiments indicate
that understory light values are relatively low and do not
vary too much in non-gap areas of the forest [4, 5, 10, 15].
Furthermore it is not predicted well by our simplified lo-
cal canopy architecture in non-gap areas because branching
patterns adapt to the local light environment to fill space.
Only a small portion of the forest has gaps, created by the
demise of large individuals, where the light value is high and
varies significantly. Since the density of the forest does not
change each year except at a few locations and the growth is
minimal in low-light areas, there is no need to compute un-
derstory light for the entire landscape at each time step. We
propose the following gap model for computing understory
light. First we need some notation. For a cell j ∈ M and a
positive integer r > 0, let Br(j) denote the r × r neighbor-
hood around j, i.e., a square composed of r × r grid cells
centered at j. For a set X of cells, let Br(X) =

S
j∈X Br(j).

w
ω

Gap

Buffer

Secondary buffer

Figure 6. Structure of a gap.

We call a grid cell j ∈ M exposed if the height of all
individuals in Bk(j) is at most h0, where k and h0 are em-
pirically chosen parameters (e.g., we have chosen k = 5 and
h0 = 2m in most of our experiments). The set of exposed
cells is called the gap area. See Figure 6. Let Et denote the
set of exposed cells at time t. Cells in the neighborhood of
Et have comparatively higher light values than the average
understory light (see Figure 8), so we include them as well
in the gap area. More precisely, we fix a parameter called
buffer width w and set Gt =

S
j∈Et

Bw(j). The value of w
depends on the density of the forest and the gap size, and it
varies in the range 5–10m [4].

To calculate the light values in the cells of Gt, we consider
the individuals in the region surrounding Gt as well. This
additional region is called secondary buffer (lightly shaded
area in Figure 6). The secondary buffer region is only used
for computing light in Gt and we regard it as non-gap area.



(a) (b) (c) (d)

Figure 7. Snapshots from a gap simulation after x years: (a) x = 2, (b) x = 4, (c) x = 6, (d) x = 8 [4].
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vs distance from the gap center for a gap in the forest. It
shows both the value computed by the gap (dashed line) and
individual-tree (solid line) model.

The effect of the individuals beyond the secondary buffer
region on the understory light of the buffer and gap regions is
captured by drawing translucent walls around the secondary
buffer, which are approximated by vertical rectangles.

Let ω denote the width of the buffer plus secondary buffer
regions. We define Bt = Bω(Et), and we set Wt = ∂Bt.
For each cell j ∈ Gt, its understory light value is the total
light that reaches j through the walls erected on Wt and
the set of trees in the cells of Bt, namely,

S
l∈Bt

Tl; the light
is computed as described in the previous section. For each
grid cell in non-gap area, M\Gt, we draw light values from a
normal distribution with mean equal to an average non-gap
background light value of a saturated forest. We assign a low
variance to account for the low variability in this situation.

The dynamics of the gap model consists of three main
parts at each time step: gap creation, gap deletion, and
light update. That is, at each time step, we identify the
new exposed cells (gap creation) and the cells that were ex-
posed in the previous time step but no longer are exposed
(gap deletion), and then we compute the light values in the
updated gap region (light update). Figure 7 shows the pro-
cess of filling of gaps with trees at different time periods after
gap creation. These snapshots are taken from a simulation
of the model.

Maintaining gaps. At each time step t we maintain the
sets Et,Gt,Bt, and Wt. We maintain Et as a list of cells,
Gt,Bt as bit maps, and Wt as a collection of orthogonal
polygons. The maintenance of Gt is identical to that of Bt,

so we do not discuss it here. Instead of computing these sets
anew at each time step, we update them dynamically. Let
It denote the set of cells that were not exposed at time t−1
but became exposed at time t, and let Dt ⊆ Et−1 denote the
set of cells that were exposed at time t−1 but are no longer
exposed at time t. Then Et = (Et−1 \Dt) ∪ It.

Computation of Dt. Let E+ = Bk(Et−1). For each cell
` ∈ E+, we compute its maximum canopy height at time t,
i.e., the height of the tallest canopy that intersects j. Next,
for each cell j ∈ Et−1, we check whether any cell of Bk(j) has
maximum canopy height exceeding h0. If so, j is no longer
exposed at time t, and we add j to the set Dt. Since each
grid cell of M contains O(1) adult individuals, the running
time of this procedure is O(k2|Et−1|).

Computation of It. Since tree-canopy heights increase
monotonically over time, a cell j not exposed at time t can
become exposed at time t + 1 only if an individual i ∈ T
whose canopy covers a cell of Bk(j) dies at time t + 1 and
reduces the exposed canopy height in Bk(j) to at most h0.

Thus, let T↓t denote the set of deceased trees at time t. For

each tree i ∈ T↓t , let Ci ⊆ M be the set of cells occupied
by the canopy of i. For each cell j ∈ Ci, we recompute
the exposed canopy height at j. If this values falls below
h0, we search within the k × k neighborhood of j and com-
pute all cells that become exposed. We add these cells to
It. Processing each tree in T↓t takes O(k2) time under the
assumption that the canopy of each tree spans O(1) cells, so

the running time of this procedure is O(k2|T↓t |).
Computing Bt and Wt. Recall that, to compute under-

story light in the gaps at time t, in addition to rendering all
trees in the gap Gt, we also need to compute trees in Bt and
the translucent wall erected on Wt. After having computed
Et, Bt and its boundary Wt can be computed in a straight-
forward manner. Since It and Dt are typically small, we
construct Bt from Bt−1 as follows: For each cell j ∈ M, we
maintain the quantity βj , the number of cells ` ∈ Et such
that j ∈ Bω(`); Bt is the set of cells ` with β` > 0. Let j be
a cell in Dt∪It. Then j affects Bt and Wt within Bω(j). We
first process the cells of Dt. Let j be a cell in Dt. For each
cell ` ∈ Bω(j) we decrement the value of β`. If it becomes
zero, then we also update Wt around `. Next, let j be a cell
in It. For each cell ` ∈ It, we increment the value of β`. If it
becomes 1, we update Wt around `. The time spent in this
step is O(ω2(|It|+ |Dt|)).

Putting everything together, the total running time spent
on updating Et,Gt,Bt,Wt is O(k2(|Et−1|+ |T↓t |) +ω2(|It|+
|Dt|)).
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Figure 9. (a) Tree statistics for 1500 year run: The total number of trees, the number of mature (taller than eight meters) trees,
the number of trees that die, and the number of trees that become reproductive each year. The large oscillations in the early time
steps disappear as the model becomes stable after a few generations. (b) This shows statistics similar to (a), but showing the
number of individuals in different size classes, per acre of the forest. (c) Percentage of cells in gap areas for a 512m2 forest.

5. EXPERIMENTS
We have implemented both the understory-light and the

seed-dispersal algorithms described in this paper and inte-
grated them into the SLIP model. Our experimental results,
described below, demonstrate that exploiting the tempo-
ral coherence leads to significant speed-up in the algorithm
without significant loss of accuracy. We ran our experiments
on an Intel Core2 Duo CPU E6850 at 3.00GHz with 4GB of
internal memory. We used Ubuntu 10.4 and two 1TB SATA
disk drives in a RAID0 configuration. Additionally, the ma-
chine contained a NVIDIA GeForce GTX 470 graphics card
running CUDA 3.0. This card has 1.2 gigabytes of memory,
448 CUDA cores, and 14 multiprocessors. The algorithm
was implemented in C++ using OpenGL to interact with
the graphics card.

The experiments in this section were performed on a sim-
ulated forest consisting of trees of the species Acer Rubrum
(red maple), which is one of the two dominant species in
Duke forest (the other being Liriodendron tulipifera, yellow
poplar). The parameters used in Equation (2) for computing
the fecundity for the Acer Rubrum species were:

β0 β1 β2 β3 β4

4.22 1.5 -0.11 0.388 -0.316

Light experiments. Recall that the main idea in the gap
model for computing the understory light is to restrict the
explicit computation of understory light in the vicinity of
significant openings in the canopy. The parameters k, h0, ω
that determine the gap and buffer areas play an important
role. Choosing them conservatively makes the algorithm
slow — even slower than the individual-tree model because
of overhead of maintaining gaps — and choosing them liber-
ally deteriorates the accuracy. Based on empirical analysis,
we choose k = 5, h0 = 2m, and ω = 20m in our simu-
lation. The time spent in rendering the gaps dwarfed the
time in maintaining them in all of our tests, so use a more
naive algorithm than the algorithm described in Section 4
for maintaining gaps. Figure 9(c) shows the percentage of
cells in gap areas during a 1500-year run of a 512 × 512m2

forest. Only 4-10% of the cells lie in gap areas most of the
time, thereby significantly improving the running time —
computing the understory light using the gap model took
2.1 seconds on average, including the time for maintaining

the gaps, while average running time of the individual-tree
model was 24.4 seconds.

(a) (b)

Figure 10. (a) Light-map computed using the individual-tree
model, and (b) using the gap-model. The color scheme maps
from blue at 0% light intensity to red at 30%.

Figure 10 (a) shows an understory light-map computed us-
ing the individual-tree model, Figure 10 (b) shows the light-
map for the following year computed using the gap model.
Note that the high light values in the individual-tree model
are also captured by the gap model, as desired. In general,
light values in the individual-tree model and the gap model
differ outside of the gap areas. This difference is an artifact
of tree canopies being modeled as cylinders [16], thereby
leaving small gaps between trees and causing non-uniform
understory light, while in a real forest neighboring mature
trees tend to have canopies that are “grown together”, pro-
ducing a uniform cover. The translucency parameter (λ)
in the light model is empirically measured in real forests
and thus not accurately modeled for trees with cylindrical
canopies. In the gap model, this effect is naturally less pro-
nounced.

Dispersal experiments. Figure 11(a) shows the results
of running the dispersal algorithm with different monopole
coefficients on different size forests; trees were almost uni-
formly distributed on the grid with an average of one tree
for every four cells. The figure shows that the monopole
coefficient has a significant impact on the running time of
the dispersal algorithm; it becoming dramatically faster as
µ increases. For instance, it takes about 1 second on a
1024 × 1024 forest with µ = 0.4 while taking about 100



 0.01

 0.1

 1

 10

 100

 1000

 10000

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Ti
m

e
 (

s)

Monopole coefficient

1024
512
256

(a)

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5 6 7 8 9 10

R
a
ti

o
 o

f 
v
is

it
e
d
 a

n
d
 t

o
ta

l 
n
o
d
e
s 

in
 l
e
v
e
l 

Quad-tree level

μ=1
μ=0.6
μ=0.1

μ=0.03

(b)

0 %

2 %

4 %

6 %

8 %

10 %

 0  200  400  600  800  1000  1200  1400  1600

R
a
ti

o
 o

f 
p

o
p

u
la

ti
o
n

Simulation year

Newly fecund
Deceased

(c)

Figure 11. (a) Running time for a single dispersal step in a forest as a function of µ. (b) Number of nodes visited in each of the
log2 1024 = 10 levels of the quad tree for different values of µ and relative to number of cells in the level. (c) Tree statistics for
1500 year run: the number of trees that become fecund or die each year as a percentage of the total number of trees at that year.
The y-axis is on a log-scale in both (a) and (b).

seconds with µ = 0.05. This speedup is explained by the
histogram in Figure 11(b), which shows how many nodes of
each level of the quad tree that are visited by Algorithm 3
relative to the number of cells in that level. For small values
of µ, the algorithm performs most of the dispersal directly
on the leaves of the quad tree, but as it increases more com-
putation is performed at higher nodes of the tree. The bell
shape of the histograms are caused by border effects because
of the limited size of the landscape.

The effect of µ on the output is demonstrated in Figure 12.
The output for high values of µ is coarse but as µ decreases,
the resulting dispersal maps gets smoother. As evident from
the figure (and other experiments we performed), decreas-
ing the value of µ below 0.4 does not improve the accuracy
much and it remains within uncertainty level of data and
the process model, so we choose µ ≈ 0.4. The Student’s t-
distribution used to model the dispersal kernel is very heavy
at small distances from the tree, therefore the distance ap-
proximation because of Assumptions (A1) and (A2) has sig-
nificant impact on the approximated values of seed density
in the neighborhood of mature trees, as evident in Figure 12.

As shown in Figure 11 (c), the number of trees dying or
becoming reproductive each year is small compared to the
total number of trees in the forest, thereby making the dy-
namic dispersal algorithm considerably faster. Over a long
simulation like the one in Figure 11, the average time spent
updating the temporal approximation is 0.1 seconds which is
10 times faster than running the full algorithm on a 512×512
forest. For a 512×512 forest this implies that the time spent
updating every ten year about equal to the total time spent
computing the temporal approximation in the nine preced-
ing years.

6. DISCUSSION
In this paper we described new algorithms for computing

seed dispersal and understory light in a forest, which ex-
ploit temporal coherence. This allows ecologists to simulate
processes that span landscapes, but are still subject to in-
teractions between individual trees. Without sacrificing the
local details in dispersal and light competition, temporal
coherence allows for landscape simulation, with acceptable
and known approximation. The spatial detail needed to ac-
curately capture competition within small canopy gaps is
preserved by our methods, which is critical for recruitment
of the next generation of trees. Dispersal accurately rep-

resents the tendency for most seed to fall near the parent
trees, but also permits long-distance dispersal. We expect
that application of these approaches will allow us to deter-
mine how dispersal and competition for light contribute to
species coexistence and the diversity of forests.

We are currently refining the gap model and making the
light-computation algorithm faster, by defining the notion
of exposed cells more carefully. This will reduce the number
of trees that are rendered at each time step. At the mod-
eling level, building on SLIP and these algorithms, we are
developing an emulator using statistical techniques, which
will circumvent the need of maintaining individual trees at
all locations in a forest. Such a “hybrid” technique is needed
if we wish to perform simulations at a regional scale (e.g.
entire North-Eastern US).
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