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ABSTRACT
A fundamental problem in analyzing trajectory data is to identify
common patterns between pairs or among groups of trajectories.
In this paper, we consider the problem of matching similar portions
between a pair of trajectories, each observed as a sequence of points
sampled from it. We present new measures of trajectory similarity
— both local and global — between a pair of trajectories to dis-
tinguish between similar and dissimilar portions. We then use this
model to perform segmentation of a set of trajectories into frag-
ments, contiguous portions of trajectories shared by many of them.

Our model for similarity is robust under noise and sampling rate
variations. The model also yields a score which can be used to rank
multiple pairs of trajectories according to similarity, e.g. in cluster-
ing applications. We present quadratic time algorithms to compute
the similarity between trajectory pairs under our measures together
with algorithms to identify fragments in a large set of trajectories
efficiently using the similarity model.

Finally, we present an extensive experimental study evaluating
the effectiveness of our approach on real datasets, comparing it
with earlier approaches. Our experiments show that our model for
similarity is highly accurate in distinguishing similar and dissimilar
portions as compared to earlier methods even with sparse sampling.
Further, our segmentation algorithm is able to identify a small set of
fragments capturing the common parts of trajectories in the dataset.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—data min-
ing; F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems—computations on discrete
structures
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1. INTRODUCTION
Trajectories are functions from a time domain—an interval on

the real line—to Rd with d > 1, and are observed as sequences of
points sampled from them. They arise in the description of any sys-
tem that evolves over time and are being recorded or inferred from
hundreds of millions of sensors nowadays, from traffic monitoring
systems [19] and recordings of GPS sensors on cell phones [17] to
cameras in surveillance systems and smart phones, helmets of sol-
diers in the field [7], medical devices, and scientific experiments
and simulations such as molecular dynamic simulations [13].

A central problem in analyzing trajectory data is to identify com-
mon patterns between pairs or among a group of trajectories. Be-
sides being interesting in its own right, this problem often lies at
the core of classifying, clustering, and computing mean trajecto-
ries. Motivated by this goal, we study two problems in this paper.
The first problem is to develop a model and algorithms for matching
similar portions between two trajectories that is effective despite is-
sues present in the data due to real-world constraints. This problem
is important both by itself and as a building block for clustering
trajectories. The second problem is to segment a large set of trajec-
tories into fragments, contiguous portions shared by many trajec-
tories. Such a segmentation is often key to identifying the charac-
teristics of the dataset. For instance, in GPS traces, fragments may
correspond to important road sections.
Problem statement. We first study the problem of matching sim-
ilar portions between two trajectories. If we are given two trajec-
tories γ1, γ2, then their similar portions can be defined by repa-
rameterizing them using two functions α : [0, 1] → Rd and β :
[0, 1] → Rd and identifying the sub-intervals of [0, 1] over which
the two of them are similar. However, we only have finite sample
points from each trajectory with additional noise. More precisely,
let P = 〈p1, . . . , pm〉 and Q = 〈q1, . . . , qn〉 be two sequences of
points in Rd, sampled from γ1 and γ2 with added noise. We match
similar portions between γ1 and γ2 by computing correspondences
between sample points in P and Q.

Such a set of correspondences must be able to match similar por-
tions in the presence of noise/outliers, even if the sampling rates of
the two trajectories are different, and the trajectories are partially
observed (i.e., portions of trajectories are missing). For any given
set of correspondences between two trajectories, it is also advanta-
geous to provide a score indicating their degree of similarity. Such a
score is not only useful in identifying a good set of correspondences
but also a way to rank multiple pairs of trajectories according to
similarity, e.g., in clustering applications.



Our objective is to define an appropriate model for correspon-
dences together with a scoring function to capture the above re-
quirements and to compute correspondences between two trajec-
tories with the optimal score efficiently. We are also interested
in identifying the most similar contiguous sub-trajectories of two
given trajectories, i.e., computing local similarity between trajecto-
ries.

Next, we study the problem of segmenting a collection of trajec-
tories into a small set of fragments, using which large portions of all
trajectories may be described compactly, i.e., these fragments cap-
ture the characteristics of the dataset. Each fragment represents a
contiguous portion of a trajectory and the same fragment on two tra-
jectories corresponds to a sub-trajectory common to both of them.
Such a form of compression or abstraction will be useful for de-
tecting patterns of behavior more efficiently and also for efficient
clustering of trajectories. The objective is to represent large por-
tions of trajectories with as few fragments as possible — there is a
tradeoff between the number of fragments used and the number of
trajectories sharing each fragment.

Related work. There is extensive work on computing similar-
ity between two objects (or rather points sampled from the objects)
in many fields, including computational geometry, computer vision,
computer graphics, and statistical learning. A commonly used mea-
sure of similarity is the so-called Fréchet distance [2]. Informally,
consider a person and a dog connected by a leash, each walking
along a curve from its starting point to its end point. Both are al-
lowed to control their speed, but they cannot backtrack. The Fréchet
distance between the two curves is the minimal length of a leash that
is sufficient for traversing both curves in this manner. The Fréchet
distance between two polygonal curves with m and n vertices re-
spectively can be computed in O(mn log(m+ n)) time [2]. If we
only have samples of points on each trajectory, then a simpler vari-
ant, called discrete Fréchet distance, is used, where the dog and its
owner jump from one sample point to the next without backtrack-
ing.The discrete Fréchet distance can be computed in O(mn) time
by a straightforward dynamic programming algorithm. Recently
Agarwal et al. [1] have presented a sub-quadratic time algorithm
for the same.

For a given pair of trajectories, there may exist a large number
of possible matchings which yield the optimal Fréchet distance.
Hence, the correspondences provided by any matching is not nec-
essarily a good indicator of trajectory similarity; see Fig. 1(a). To
circumvent this issue, instead of minimizing the length of the leash
required (which is equivalent to finding a matching where the max-
imum distance between matched points is minimized), we may try
to minimize the average distance. This falls under the popular dy-
namic time warping framework, which was originally developed for
matching speech signals in speech recognition [14]. It matches two
similar trajectories effectively even if the sampling rates are differ-
ent. Since DTW tries to match all points, the results are not mean-
ingful when significant deviations occur between the two trajecto-
ries; see Fig. 1(b). It is even more difficult to distinguish actual de-
viations from outliers caused by measurement errors. Approaches
which aim to be robust to outlier include using the longest common
sub-sequence [18], an adaptation of the edit-distance measure [6]
for sequences, where trajectory points are designated a match if
they are closer than a threshold distance, and the edit-distance with
real penalties measure [5]. However, these approaches do not dis-
tinguish outliers from actual deviations.

On the other hand, there is a rich body of literature on pairwise
sequence alignment in computational biology, where the goal is to
identify similar portions between two DNA or protein sequences
even in the presence of significant dissimilar portions; see [8, cf.

Chapter 2]. These methods have also been extended to aligning
two polygonal curves such as protein backbones and may be easily
applied to the matching of trajectories with the choice of an ap-
propriate scoring function. Fig. 1(c) shows, non-uniform sampling
rates, however, cause similar portions to be designated as gaps be-
cause correspondences are restricted to be one-to-one.

When considering a large dataset of trajectories, there exists a
large body of work on identifying patterns in such datasets. In
[10, 20], similarity of soccer player trajectories is considered based
on significant events such as passing or shooting. In [12], the au-
thors propose the simplification of trajectories into a set of segments
which are then clustered; a similar approach is taken in [16]. Per-
haps most similar to the objectives in this paper are those in [3],
where the Fréchet distance is used to cluster popular subtrajectories
in a given trajectory dataset, and in [4], where a pathlet dictionary
is learned via solving an optimization problem. However, [3] aims
at finding only one optimal subtrajectory cluster and [4] needs to
first convert the trajectories into paths on the underlying roadmap
graph before running their optimization algorithms.
Contributions. Our first contribution is the introduction of a new
model for matching similar portions of trajectories as defined using
the notion of assignments in Section 2. Together with this model,
we design an appropriate way to score assignments thus provid-
ing a unified framework encompassing previous approaches such
as dynamic time warping, sequence alignment, edit-distance and
others, while handling the issues present in real data. Our model
can be adapted to perform the so-called local assignment for iden-
tifying most similar sub-trajectories between two trajectories. We
also consider a semi-continuous model in which we interpolate each
trajectory between consecutive samples, say, by a linear function,
and allow matching samples to interpolated points. This approach
adapts the model to sparsely sampled data.

Our second contribution is a quadratic-time dynamic program-
ming based algorithm for computing optimal assignments between
two trajectories under our scoring function (Section 3). Our algo-
rithm builds on ideas from sequence alignment and dynamic time
warping. Furthermore, our algorithm can be adapted to compute
local and semi-continuous assignments as well.

Our third contribution is an efficient algorithm to segment a set
of trajectories into fragments using pairwise matchings. The algo-
rithm is designed in conjunction with our assignment model but can
be adapted to other matching models as well.

We present an extensive experimental study that demonstrates
the effectiveness of our matching and segmentation algorithms. We
evaluate the algorithms on a number of real datasets and compare
them with algorithms based on existing similarity models. We show
that, in practice, our model captures the advantages of both dynamic
time warping and sequence-alignment based approaches with none
of their drawbacks. We also show that the segmentation algorithm
is successful in capturing the shared portions of the trajectories us-
ing a small number of fragments relative to the number of sample
points. Moreover, our experiments are highly indicative of the fact
that the segmentation is most effective using the assignment model
for matching trajectories.

2. MODEL FOR MATCHING
Let P and Q be sequences of points as defined above. We de-

scribe our model for measuring the similarity of P and Q and
matching their common portions. Our model builds on the strengths
of both dynamic time warping (DTW) and sequence alignment with-
out their drawbacks: it handles non-uniform sampling of points by
allowing multiple points of P to match with one point of Q, and it
distinguishes deviation from noise by using the gap model.



DEFINITION 1. An assignment for P and Q is a pair of func-
tions α : P → Q ∪ {⊥} and β : Q → P ∪ {⊥} for the points of
P and Q respectively. If α(pi) = ⊥ (or β(qj) = ⊥), then pi (or
qj) is called a gap point. A maximal contiguous sequence of gap
points in P or Q is called a gap.

An assignment is monotone if it satisfies the following condi-
tions: (i) if α(pi) = qj then for all i′ > i, α(pi′) = ⊥ or
α(pi′) = qj′ for some j′ > j, and (ii) if β(qj) = pi then for
all j′ > j, β(qj′) = ⊥ or β(qj′) = pi′ for some i′ > i.

Intuitively, if a point pi ∈ P lies on a similar portion of the two
trajectories then α(pi) defines the point on Q to which pi corre-
sponds; pi is a gap point otherwise. A similar interpretation holds
for β(·). Unlike traditional alignment/matching models, our assign-
ments are asymmetric, which allows it to better adapt to trajectories
with different sampling rates. The notion of gaps is introduced to
identify deviations between the two trajectories. Using gaps enables
the identification of a “good” assignment even if there are only par-
tial observations on any of the trajectories; we can compute an as-
signment for the observed portions. Distinguishing between noise
and dissimilarity can be accomplished by restricting to assignments
where gaps are sufficiently long (short deviations are more likely to
be due to noise and thus, the underlying portions of the trajectories
are similar).

It will be easier to view an assignment of P andQ in terms of the
complete directed bipartite graph G := G(P,Q) = (P ∪ Q,P ×
Q∪Q×P ), i.e.,G has a directed edge (pi, qj) and another directed
edge (qj , pi) for every pair pi ∈ P and qj ∈ Q. We say that a
pair of edges (pi, qj) (or (qj , pi)) and (pk, ql) (or (ql, pk)) cross if
i < k and j > l or vice versa. Under our definition, the opposite
edges (pi, qj) and (qj , pi) do not cross each other.1

In this perspective, a monotone assignment is a setE of pairwise
non-crossing edges in G so that E has at most one outgoing edge
from every point in P ∪Q. Points with no outgoing edges are gap
points and, as in Def. 1, a maximal contiguous sequence of gap
points in P or Q is called a gap, and the length of the sequence is
called the length of the gap. Let Γ(E) denote the set of gaps in P
and Q for the assignment E. We define the score of E, denoted by
σ(P,Q;E), as

σ(P,Q;E) =
∑

(u,v)∈E

1

λ+ ‖u− v‖2 +
∑

g∈Γ(E)

(θ + ∆|g|), (1)

where θ < 0,∆ > 0 and λ > 0 are carefully chosen parameters,
as described in Section 3, ‖ · ‖ is the L2-norm and |g| is the length
of a gap g. For appropriate comparison between different pairs of
trajectories and their corresponding assignments, the above score
may be normalized in a straightforward manner to provide a score

1Note that our definition of the crossing is topological, defined in
terms of the graph G. the line segments piqj and pkql correspond-
ing to two non-crossing edges (pi, qj) and (pk, ql) may cross each
other (geometrically), and may be disjoint even if the graph edges
are crossing.

between 0 and 1. We can rewrite the score in terms of the functions
α, β from Def. 1 as well:

σ(P,Q;α, β)=
∑
pi∈P

α(pi)6=⊥

1

λ+ ‖pi−α(pi)‖2

+
∑
qj∈Q

β(qj)6=⊥

1

λ+ ‖qj−β(qj)‖2
+
∑

g∈Γ(α,β)

(θ + ∆|g|), (2)

where Γ(α, β) is the set of gaps in P and Q given α, β. We define
the similarity between P and Q as

σ(P,Q) = max
α,β

σ(P,Q;α, β),

and the corresponding assignment identifies the similar portions.
Why the directed graph? We now explain why we chose a di-
rected graph model and an assignment. Both DTW and sequence
alignment can be formulated as computing a subset of non-crossing
edges in the complete undirected bipartite graph P × Q. In par-
ticular, DTW finds a subset D ⊂ P × Q of non-crossing edges
such that each vertex of P ∪ Q is incident on at least one edge of
D and the total “length” of edges in D is minimum. In some appli-
cations, an appropriate choice for the length of edges would be the
Euclidean distance whereas in other applications, a different func-
tion is used. On the other hand, the sequence-alignment model asks
for computing a set of vertex-disjoint edges M ⊂ P × Q whose
score is maximum, where the score is similar to (1).

It is tempting to describe an assignment as well with respect
to the undirected graph but this leads to difficulties. For exam-
ple, we may relax the vertex-disjoint condition from the sequence-
alignment model allowing multiple points of P to match with one
point of Q, (see Fig. 2(a)) and simply ask for finding a set of non-
crossing edges whose score is maximum, but this is not always
meaningful and introduces additional edges that are redundant. For
example, in Fig. 2(b), this approach will find three edges — the
diagonal edge (p2, q1) is spurious and is an artifact of the model
because it is more meaningful to match p1 with q1, p2 with q2 and
vice versa.

The directed graph model avoids this problem by not requiring
the functions α and β to be symmetric; see Fig. 3.

p1 p2 p3

q1

p4

q2 q3
q4

p1 p2

q1 q2

(a) (b)

Figure 2. Pros and cons of allowing multiple matches in an undi-
rected graph:(a) A situation where allowing multiple matches is
logical. (b) A situation where allowing multiple matches does not
allow us to obtain a clear correspondence.

(a) (b) (c) (d)

Figure 1. Matching of two trajectories using different approaches: (a) Fréchet distance, (b) dynamic time warping or average Fréchet distance,
(c) sequence alignment based method, (d) our model. The green edges are the correspondences between points.
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q2 q3
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Figure 3. Using a directed graph provides a logical set of corre-
spondences always. Comparison with the examples of Fig. 2.

There are a few other subtle advantages of using the directed
graph model, omitted from this paper due to lack of space.
Remark. (i) Our framework is not limited to the scoring function
(1). For example, the sequence-alignment based approach, DTW
or other measures such as edit-distance are easily incorporated into
our model. (ii) Note that according to our definition of assignments,
vertices inG which have incoming edges but no outgoing edges are
designated as gap points. This may be modified so gap points have
no incoming edges.
Local assignment model. We now describe how we modify our
model for finding the most similar sub-trajectories between two
trajectories, or so-called local assignments. Specifically, we are
only interested in computing correspondences for points along the
most similar portions and scoring these. At a high level, instead
of examining only the complete trajectories, we wish to examine
all possible pairs of sub-trajectories and choose the one which is
most similar. However, choosing the most similar sub-trajectories
requires a modification of the scoring function since the pair of sub-
trajectories which achieves the maximum score is always going to
be the complete trajectories themselves due to the fact that all terms
are positive. More precisely, given two trajectories P and Q, for
any pair of sub-trajectories P ′, P ′′ of P and Q′, Q′′ of Q such that
P ′ is contained within P ′′ and Q′ is contained within Q′′, we al-
ways have σ(P ′′, Q′′) ≥ σ(P ′, Q′).

We therefore, modify the score of an assignment E, represented
as a set of non-crossing edges, as follows:

σl(P,Q;E) =
∑

(u,v)∈E

[
1

λ+ ‖u− v‖2 − τ
]

+
∑

g∈Γ(E)

(θ + (∆− τ)|g|) . (3)

Here, τ > ∆ is a threshold parameter that we subtract from each
term in (1). The parameter τ defines a lower bound on the score of
assignments being considered and we only consider pairs of sub-
trajectories P ′, Q′ of P and Q respectively such that σ(P ′, Q′) is
at least this lower bound. Formally, for any two sub-trajectories P ′

of P and Q′ of Q, let EP ′,Q′ = P ′ ×Q′ ∪Q′ × P ′ denote the set
of edges in the complete directed bipartite graph between P ′ and
Q′. Our goal is to compute

σl(P,Q) = max
P ′,Q′

max
E⊂EP ′,Q′

E is monotone

σl(P
′, Q′;E),

where the maximum is taken over all subtrajectories P ′ andQ′ of P
and Q respectively, and over all monotone assignments of P ′, Q′.
Semi-continuous assignment model. The model discussed so far
is designed to be fairly robust to both noise and sampling rate differ-
ences but still may break down when the noise or sampling rate dif-
ference are too large. By modeling the continuous trajectory from
which the sample points are generated, one may handle these issues
better. Specifically, instead of scoring based on distances between
sample points, we consider the uncertainty inherent in them and use
distances between the most likely locations of the sample points.

(a) (b)

Figure 4. Discrete (a) vs semi-continuous (b).

We achieve this by interpolating between consecutive sample
points and considering all points on this interpolation as candidate
locations for the samples. For example, consider Fig. 4. Due to the
different sampling rates of the trajectories, it is better to assign end-
points in one trajectories to points on a continuous curve obtained
by a linear interpolation between endpoints of the other trajectory.
Such a linear interpolation obtained by connecting two consecutive
sampled points by a line segment is a common way to model the
underlying trajectory. Let P and Q denote these curves for P and
Q respectively. We next modify the scoring function by replacing
the distance term with a function f(·) as follows:

σs(P,Q;E) =
∑

(u,v)∈E

1

λ+ f(u, v)
+

∑
g∈Γ(E)

(θ + ∆|g|) . (4)

We set f(u, v) = ‖u − v′‖2 where v′ is the closest point to u
on the segment connecting v to its preceding point on P or Q (if
v is the first point, then v′ = v). As before, we are interested in
the optimal assignment Σs(P,Q) = arg maxE σs(P,Q;E) and
its score σs(P,Q) = maxE σs(P,Q;E). Using v′ is a simple
method of specifying a likely location for v given the linear inter-
polation model for the underlying trajectory. Alternatively, we may
use a more sophisticated predictor for v′ if we have prior knowledge
of how the sample points where generated.

3. ALGORITHMS FOR MATCHING
We now describe an algorithm for computing the optimal score

σ(P,Q) and the corresponding assignment. Our algorithm, similar
to that for sequence alignment [8], runs inO(mn) time. Because of
the asymmetric nature of the definition of assignments, the recur-
rence relation is complex, and requires a few auxiliary assignments
and score functions.
Auxiliary functions. For 1 ≤ i ≤ m, let Pi = 〈p1, . . . , pi〉 de-
note the prefix of P of length i, and for 1 ≤ j ≤ n, let Qj =
〈q1, . . . , qj〉 denote the prefix of Q of length j. The algorithm
computes the similarity score σ(Pi, Qj) for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. For brevity, let σ(i, j) denote σ(Pi, Qj). Let Σ(i, j)
denote the (optimal) monotone assignment corresponding to the
score σ(i, j). With a slight abuse of notation, we use both the graph
representation — a set of non-crossing edges — as well as the pair
of functions α, β. It will be clear from the context which of the two
representations we are referring to.

For each pair i, j, to compute σ(i, j) and Σ(i, j) efficiently, we
also compute a set of auxiliary functions described below:
• σ⊥∗(i, j) and σ∗⊥(i, j): σ⊥∗(i, j) denotes the score of the

best monotone assignment, denoted by Σ⊥∗(i, j), for Pi and
Qj with the restriction that pi is a gap point. That is, there
is no outgoing edge from pi, but our model allows Σ⊥∗(i, j)
to have incoming edges to pi. We similarly define σ∗⊥(i, j)
and Σ∗⊥(i, j).
• σ⊥⊥(i, j): the score of the best monotone assignment, de-

noted by Σ⊥⊥(i, j), for Pi and Qj with the restriction that
both pi and qj are gap points.
• σφ∗(i, j) and σ∗φ(i, j): σφ∗(i, j) is the score of the best

monotone assignment for Pi and Qj , denoted by Σφ∗(i, j),



σ(i, j) = max
{
σ⊥∗(i, j), σ∗⊥(i, j), σφ∗(i, j) + δ(i, j), σ∗φ(i, j) + δ(i, j)

}
, (5)

σ⊥∗(i, j) = max
{
σ(i− 1, j) + θ + ∆, σ⊥∗(i− 1, j) + ∆, σ⊥φ(i, j) + δ(i, j), σ⊥⊥(i, j)

}
, (6)

σφ∗(i, j) = max
{
σφ⊥(i, j), σ∗φ(i− 1, j) + δ(i, j), σφ∗(i, j − 1) + δ(i, j), σ(i− 1, j)

}
, (7)

σφ⊥(i, j) = max
{
σφ∗(i, j − 1) + θ + ∆, σφ⊥(i, j − 1) + ∆, σ∗⊥(i− 1, j)

}
, (8)

σ⊥⊥(i, j) = max
{
σ∗⊥(i− 1, j) + θ + ∆, σ⊥⊥(i− 1, j) + ∆, σ⊥∗(i, j − 1) + θ + ∆, σ⊥⊥(i, j − 1) + ∆

}
. (9)

Figure 5. Recurrence relations for σ and each of the auxiliary functions. The relations for σ∗φ, σ⊥φ are symmetric to those above for σφ∗
and σφ⊥ respectively. Here, δ(i, j) = 1/(λ+ ‖pi − qj‖2).

with the restriction that pi is not assigned to any point of Qj
but points of Qj can be assigned to pi, i.e., there is no out-
going edge from pi but there can be incoming edges to pi.
The difference between σφ∗(i, j) and σ⊥∗(i, j) is that pi is
considered as a gap point in the latter and σ⊥∗(i, j) includes
the gap score corresponding to pi, namely θ+∆ if a new gap
starts at pi in Σ⊥∗(i, j) and ∆ otherwise, while in the former
no score is added corresponding to pi. We define σ∗φ(i, j)
and Σ∗φ(i, j) analogously.
• σφ⊥(i, j) and σ⊥φ(i, j): σφ⊥(i, j) is the score of the best

monotone assignment for Pi and Qj , denoted by Σφ⊥(i, j),
with the restriction that pi is not assigned to any point of Qj
as in the previous case, and qj is a gap point. Note that there
are no outgoing edges from pi or qj but there may be incom-
ing edges to one or both of them, and that σφ⊥(i, j) does not
include any score corresponding to pi but does include a gap
score for qj . We define σ⊥φ(i, j) and Σ⊥φ(i, j) analogously.

For i = j = 0, we set σ(i, j) = 0 and all other auxiliary func-
tions to −∞. For i > 0 or j > 0, the recurrence relations for each
of the auxiliary score functions are described in Fig. 5, and each
value can be computed in O(1) time using dynamic programming.
For brevity, we set δ(i, j) = 1/(λ+ ‖pi − qj‖2). We refer to [15]
for details on their derivation.

We maintain a separate table for each auxiliary function and com-
pute the entries in increasing order of i and j. For a fixed pair
i, j, we compute them in the following order: σ⊥⊥, σ⊥φ, σφ⊥,
σφ∗, σ∗φ, σ⊥∗, σ∗⊥, σ. It can be verified from (5)–(9) that each of
them can be computed in O(1) time. Hence, the total time spent in
computing the final σ(P,Q) and Σ(P,Q) is O(mn). If we main-
tain the entire tables, the space used is also O(mn) but it can be
reduced to O(m+ n) [11]. We thus obtain the following:

THEOREM 3.1. Given two sequences of points P and Q in Rd
of lengths m and n respectively, σ(P,Q) and the corresponding
assignment Σ(P,Q) can be computed inO(mn) time usingO(m+
n) space.

Local assignment. For local assignment, following the same ideas
as in the algorithm for local sequence alignment [8], we can com-
pute σ(P,Q) as defined in Section 2 in O(mn) time. Intuitively,
during the course of the execution of the algorithm described above,
when we find that the score of aligning initial portions of the trajec-
tories is too small, we should discard them from further considera-
tion and start afresh. More precisely, we modify the recurrences in
(5) by adding the 0 term:

σ(i, j) = max
{
σ⊥∗(i, j), σ∗⊥(i, j), σφ∗(i, j) + δ(i, j),

σ∗φ(i, j) + δ(i, j), 0
}
.

The others recurrences in (6)–(9) remain the same. Finally, instead
of returning σ(m,n), we return the score maxi,j σ(i, j). Omitting
details, we get the following:

THEOREM 3.2. Given two sequences of points P and Q in Rd
of lengths m and n respectively, σl(P,Q) and the corresponding
local assignment Σl(P,Q) can be computed in O(mn) time using
O(m+ n) space.

Semi-continuous assignment. Since the semi-continuous model
entails only a modification of the scoring function as described in
(4), it may be computed using the same procedure as in the general
case with the same time and space complexity.

THEOREM 3.3. Given two sequences of points P and Q in Rd
of lengths m and n respectively, σs(P,Q) and the corresponding
semi-continuous assignment Σs(P,Q) can be computed inO(mn)
time using O(m+ n) space.

Parameter selection. Parameter selection is important when choos-
ing the scoring function. During the course of the algorithm, when
examining a pair of points pi ∈ P and qj ∈ Q, the difference in
values 1/(λ+ ‖pi − qj‖2) versus ∆ dictate the choice of whether
to assign α(pi) = qj or β(qj) = pi versus assigning one or both as
gap points.

We work with the hypothesis that all points which are “matched”
have roughly the same distance. Let r be the threshold on the dis-
tance beyond which points are dissimilar. We suggest the following
choices of the parameters:

∆ =
1

λ+ r2
, θ = −l∆,

where l indicates a minimum gap length. The algorithm only chooses
to start gaps when at least l points are farther than r apart since, if
not, θ + ∆ · |g| will be negative.

The choice of r is clear if we have semantic information about
the trajectories such as what type of entities generated them. For
example, if we have GPS trajectories and wish to classify similar
portions as those following the same road, then the width of the
road, sampling rate and GPS accuracy would determine r. On the
other hand, in many situations, the choice of r is not clear. In such
cases, we suggest the following simple iterative procedure: (i) Start
with a rough guess of the upper bound r̂ and compute an assign-
ment with r = r̂, (ii) Discard a percentage of the larger distances
in this assignment and compute the root mean square (rms) of the
remaining distances, (iii) Choose a new threshold which is a small
factor of the rms, say r = c1 · rms, and (iv) Repeat steps (ii) and
(iii) until convergence.

When we identify all similar portions and dissimilar portions, we
do not expect the rms to change significantly when we discard some
of the larger distances. Hence, the assignments should converge and
the algorithm should terminate.



4. SEGMENTATION OF TRAJECTORIES
In this section we describe our segmentation algorithm. Let T =
{T1, · · · , Tk} be a set of trajectories, where each trajectory Ti =

〈pi1, pi2, · · · , pini〉. Set
∑k
i=1 ni = n. Our goal is to segment

each Ti into fragments and to identify the fragments that are shared
by many trajectories; we wish to cover all the trajectories by as few
fragments as possible.

Our segmentation algorithm works in two stages. The first stage
assigns a label L(p) ⊆ {1, · · · , k} to each point p on every trajec-
tory. Intuitively, if j ∈ L(p) for a point p ∈ Ti, then p is a point on
a subtrajectory of Ti that “spatially” overlaps with a subtrajectory
of Tj and there is a point p′ ∈ Tj that corresponds to p. The label-
ing process is accomplished by computing the assignment between
every pair of trajectories in T. The second stage identifies maxi-
mal contiguous portions of trajectories with the same labels — they
correspond to fragments. To make the step robust, we actually find
portions of trajectories where the labels are “roughly” the same. We
describe the complete details of these steps below.
Assignment graph. For each pair 1 ≤ i < j ≤ k, using the
Assignment algorithm described in Section 3, we compute as-
signment functions αij : Ti → Tj∪{⊥} and αji : Tj → Ti∪{⊥}.
We construct a directed graph G = (V,E) for vertex set V =⋃k
i=1 Tk. We connect a pair pir, pjs ∈ V by the directed edge

(pir, pjs) if either of the following satisfies:
(i) j = i and s = r + 1, i.e., pjs is the successor of pir in Ti
(ii) j 6= i and pjs = αij(pir).
We say that a point p ∈ Ti is close to trajectory Tj if i = j or

there is an edge (p, pjs) for some pjs ∈ Tj . Note that our defini-
tion of closeness is not a metric definition, in which one says that
p is close to q if ||p − q|| ≤ r for some parameter r > 0. The
metric based definition is frequently used in trajectory segmenta-
tion. There are two advantages of our approach. First, we allow an
individual point p to be not very spatially close to q to be assigned
to q, which can thus handle noise and outliers in a more principled
way. Second, p is assigned to q by the Assignment algorithm if
there is a subtrajectory that is common to the two trajectories — see
Section 5 for more discussion on this.
Labeling. We now define a labeling function L : V → 2{1,··· ,k}.
For a vertex p ∈ V , its label L(p) ⊆ {1, · · · , k} is defined as
follows:

L(p) = {j | ∃pjs ∈ Tj s.t. (p, pjs) ∈ E}

That is, L(p) is the set of all trajectories that are close to p. The
label of all vertices in V can be computed by performing a depth
first search of G.
Identifying fragments. Given labels for all trajectory points in V ,
we can now cluster them into fragments. Our algorithm proceeds by
iteratively picking a point p as a new fragment center and assigning
all the unassigned points with label similar to L(p) to the new frag-
ment, until all points in V have been assigned. More specifically,
define the similarity between two labels L(p) and L(q), denoted as
sim(L(p), L(q)), as follows:

sim(L(p), L(q)) =
|L(p) ∩ L(q)|
|L(p) ∪ L(q)|

At each iteration, let Grem denote the undirected subgraph of G
induced by the unassigned trajectory points and removing edge di-
rections. The algorithm first chooses an arbitrary unassigned point
p as the center of a new fragment. Then it traverses Grem starting
from p to identify a maximal connected component C such that for
each point q in C, 1− sim(L(p), L(q)) ≤ γ, where γ ∈ (0, 1] is a
parameter controlling how similar two labels should be to be con-

sidered as from the same fragment. Finally, we set a new fragment
f to be the vertices in C.

In some rare cases, the algorithm may produce fragments that are
not contiguous along some trajectories. In such situations, we split
such a fragment into smaller fragments. We omit the routine details
of this procedure from this paper. (In all the datasets we experi-
mented with, all fragments were contiguous along each trajectory.)

This completes the description of the segmentation algorithm.
The most expensive step is constructing the assignment graph, which
takes O(n2) time. We conclude by making a few remarks on the
fragments identified by the algorithm.

Direction of fragments. Since each trajectory is oriented and the
assignment function is monotone, each fragment is also directed. If
there are trajectories that share a common “curve” that is traversed
in opposite directions, e.g. two way traffic on a road, our algorithm
will generate two fragments for the curve — one in each direction.

Ordering of fragments. The monotonicity of the assignment func-
tion also ensures that if a pair of fragments f, f ′ appear on two
trajectories, then they appear in the same order on both of them.
This ordering is natural for many data sets. In some cases, espe-
cially when the trajectories have loops and these loops are broken
independently, one may want to relax this property, but this requires
defining the assignment function differently.

Shape of fragments. Given all the points belonging to a fragment,
we can compute a curve that best describe the fragment. The curves
of the fragments identified by our algorithm can be of arbitrary
shape and length, which makes our model more flexible in describ-
ing the trajectory data and discovering patterns.

5. EXPERIMENTS
In this section, we present the results of an experimental study

on real datasets to evaluate the effectiveness of our model and algo-
rithms, as well as to compare them with previous approaches. We
present two types of results in this section: (i) an analysis of the
effectiveness of our matching model in comparison to previous ap-
proaches, and (ii) an analysis of the behavior of the segmentation
algorithm from Section 4 when used in conjunction with different
matching models. The goal of our experiments was not only to
present a qualitative study but also to observe the characteristics of
the data and how they impact the model parameters.
Datasets. We have used three datasets in our experiments: (i)
143 trajectories of school buses in Athens, Greece [9] (we call this
the BUS dataset), (ii) the GeoLife project by Microsoft Research
Asia [21–23] consisting of 17,621 trajectories of 182 users in China
(we call this the GEOLIFE dataset), and (iii) 330 trajectories from
road cycling and running exercises captured by a fitness GPS device
at a constant one second sample rate (we call this the WORKOUT
dataset). A subset of the trajectories in the GEOLIFE dataset are
labeled with the mode of transportation used from the set {biking,
walking, running, bus, car, taxi, train, subway, airplane}. From
these, we extracted the trajectories with labels in {bus, car, taxi}
and used only those trajectories which were sufficiently long (at
least 20 sample points).

Although all three datasets are GPS trajectories, they differ sig-
nificantly from each other due to the different modes of transporta-
tion and sensor equipment as well as due to road network charac-
teristics. The WORKOUT dataset, being highly accurate and finely
sampled, represents ideal conditions. The BUS dataset contains sig-
nificant measurement noise but is more uniformly sampled than the
GEOLIFE dataset. The GEOLIFE dataset contains significant sam-
pling rate differences between trajectories while the GPS noise is
less significant when compared with the BUS dataset. In addition,
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Figure 6. Results on a trajectory pair from the BUS dataset.

(a) WORKOUT, DTW-Pruned (b) WORKOUT, Assignment (c) GEOLIFE, DTW-Pruned (d) GEOLIFE, Assignment

Figure 7. Results on trajectory pairs from the WORKOUT and GEOLIFE datasets.

it also contains many partially observed trajectories (long stretches
with no samples).

Algorithms tested. We used the DTW and sequence-alignment
based approaches to provide a basis for comparison of our approach.
We refer to these algorithms as DTW and Seq-Align and to our
algorithm from Section 3 as Assignment throughout this section.

Since DTW tries to find correspondences for every point on a tra-
jectory, we apply a simple heuristic to make its comparison with
Assignment and Seq-Align fairer: after computing the DTW
correspondences, we prune all correspondences where the distance
between the two constituent points is greater than a threshold. Re-
call that the parameter selection for our scoring function (cf. Sec. 3)
uses a similar distance threshold r. We call this modified DTW
heuristic DTW-Pruned.

Because of lack of space, we omit our experiments on local and
semi-continuous assignments (see [15] for these results).

Pairwise matching results. To show the effectiveness of our algo-
rithms, we first present results on a single pair of trajectories from
each of the datasets. We chose pairs which exhibited significant
similar portions as well as dissimilar portions and have sufficiently
dissimilar sampling rates in the case of the pairs from the BUS and
GEOLIFE datasets (the WORKOUT dataset trajectories have uni-
form sampling rates). The results exhibited on these pairs are rep-
resentative of the results on other trajectories as well. We chose a
distance threshold r = 25 m for Seq-Align, DTW-Pruned and
Assignment and a minimum gap length l = 2 for Seq-Align
and Assignment. In all cases, we perturbed one of the trajecto-
ries slightly in the figures to present the results more clearly.

In the case of both Seq-Align and DTW-Pruned, the similar
portions between trajectories are often fragmented, i.e., small gaps
are present in between the matched portions. In the former, this is
due to the fact that that correspondences are one-to-one while in the
latter, it is due to its sensitivity to the distance threshold (even dis-

tances slightly larger than r are discarded). This phenomenon does
not happen in the case of Assignment since it is robust to both
outliers and sampling rate variations. The imposition of a minimum
gap length generates correspondences which may be desired despite
having distance larger than the threshold due to the characteristics
of the trajectories in their neighborhood. Thus, it is more robust to
uncertainties in the choice of the distance threshold. In the WORK-
OUT dataset, both DTW-Pruned and Assignment perform well
due to the uniform sampling rate, velocity and accuracy of sam-
pling. See Figures 6 and 7 for results showing this behavior. The
correspondences computed by DTW are clearly meaningless and we
include it only for the sake of completeness. Due to lack of space,
we omit both DTW and Seq-Align from Fig. 7.

We next examined the number of gaps obtained by matching
all pairs of trajectories in the datasets using DTW-Pruned and
Assignment. We measured this number against an average match
score computed by taking only the first term in (1) and normalizing
it, i.e., we use the score

σm(P,Q;E) = (λ/|E|)
∑

(u,v)∈E

(1/(λ+ ‖u− v‖2)),

where E is the edge set of the optimal matching. Fig. 8 shows
these results. Here, there is a point for each pair of trajectories such
that |E| > 0 with the average match score and number of gaps
being the x and y coordinates respectively. Clearly, the number
of gaps in DTW-Pruned is significantly higher on average than
in Assignment, due to the fragmentation of matched portions
present in DTW-Pruned. Since DTW-Pruned uses a strict thresh-
old, the score variations are lower than in the case of Assignment,
although the differences are not too significant.

Parameter selection. We chose an initial distance threshold r =
500 m for our iterative parameter selection process (see Section 3),
and λ was set to (0.4r)2 as we found it to be the most suitable.



(a) BUS dataset (b) GEOLIFE dataset (c) WORKOUT dataset

Figure 8. Variations in average match score and number of gaps over all trajectory pairs in the three datasets.
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Figure 9. The assignments and corresponding distance distributions computed at various stages of the iterative algorithm on the BUS dataset.
(a) is at the first iteration, (b) at an intermediate stage and (c) at the point of convergence.

Fig. 9 shows the assignment and distribution of distances between
matched points for the pair from the BUS dataset at the beginning,
end and an intermediate step of the iterative approach. As we can
see, larger distances are slowly pruned away until we reach the op-
timal assignment. The variance in the final distribution is due to the
sparse sampling and noise in the data.
Segmentation results. We now present results of the segmenta-
tion algorithm from Section 4 on the three datasets. In addition to
the threshold γ on the similarity of labels assigned by the labeling
process, we used two thresholds η and ρ on the length of fragment
labels and number of points belonging to a fragment respectively.
By filtering fragments whose label size is less than η and/or number
of points is less than ρ, we can visualize the important fragments.
Due to the way the labeling process is executed, η provides an in-
dication of the number of trajectories sharing the fragment while ρ
is more direct.

Our segmentation algorithm (see Section 4) can be extended to
use any algorithm that computes a matching between the points in
two trajectories, and its effectiveness depends on the effectiveness
of the underlying matching model. We first compared the effective-
ness of DTW-Pruned and Assignment. The segmentation re-
sults are quite different between the two models with significantly
different split points along trajectories. This is expected in the case
of the BUS and GEOLIFE datasets due to the presence of larger
numbers of outliers and sparse sampling but is more surprising for
the WORKOUT dataset since DTW-Pruned and Assignment ap-
pear to perform identically for individual pairs. This suggests that
even very few outliers have significant effects on the segmentation
when using DTW-Pruned. Fig. 10 shows results for the WORK-
OUT and GEOLIFE datasets with thresholds η = 2, ρ = 10 and
γ = 0.4.

Next, we examine two measures of the quality of the fragmen-
tation: (i) fraction of sample points captured, and (ii) number of
fragments obtained. Fig. 11 shows the variation of these measures

with the thresholds η, ρ and γ. In all cases where the parame-
ters are fixed, η = 0, ρ = 10 and γ = 0.4. The number of
points captured by using Assignment is consistently higher than
when using DTW-Pruned while the number of fragments is con-
sistently lower. Even when the number of fragments is higher for
Assignment (as sometimes for the GEOLIFE dataset), the frac-
tion of points captured is significantly higher than DTW-Pruned.
Since the number of road sections is relatively small in all the datasets
as compared to the number of points, we conclude that Assignment
is consistently better at representing the shared portions of the tra-
jectories with fewer fragments. Finally, Fig. 12 shows the results
of the segmentation algorithm on the WORKOUT dataset using the
Assignment model for γ ∈ {0.1, 0.4, 0.7}. Here, γ = 0.1 pro-
vides a reasonable segmentation of the trajectories while γ = 0.4
does not vary much. Setting γ = 0.7, however, merges some of
the fragments and the segmentation starts to fall apart. We note that
the threshold γ provides a natural way to compute segmentations at
different hierarchies which may be useful for clustering purposes.

6. DISCUSSION
We have shown that our matching framework captures the advan-

tages of both DTW and sequence alignment based approaches for
identifying trajectory similarity, and that it is able to exceed their
accuracy. Experiments show that the approach is highly accurate in
identifying similar portions of trajectories from real datasets. Even
without an accurate prior knowledge of distances between points
based on which to compute similarity, our iterative procedure is
able to converge at the point where similar portions are identified
and distinguished accurately from dissimilar portions. Further, the
segmentation algorithm is able to capture the shared portions of the
trajectories in the datasets better using our model as compared to
other approaches. This indicates that our model and segmentation
algorithm are effective at capturing the characteristics of the data.



(a) WORKOUT, Assignment (b) WORKOUT, DTW-Pruned

(c) GEOLIFE, Assignment (d) GEOLIFE, DTW-Pruned

Figure 10. Visual comparison of segmentation algorithm using DTW-Pruned and Assignment matching models.
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Figure 11. Quantitative comparison of segmentation algorithm using DTW-Pruned and Assignment matching models. (a)-(c) and (d)-(f)
show the variation in number of fragments and fraction of points captured with η, ρ and γ.

(a) WORKOUT dataset, γ = 0.1 (b) WORKOUT dataset, γ = 0.4 (c) WORKOUT dataset, γ = 0.7

Figure 12. Visual comparison of segmentation using the Assignment model for different thresholds γ. In all cases, η = 2 and ρ = 10.



There are many directions for future research. One direction is to
develop algorithms to handle extremely sparse sampling in the tra-
jectory dataset. Such algorithms could explore the fact that there are
usually sufficient sample points along a road section even though
there might be very few samples along any particular trajectory.
After running our segmentation algorithm, each trajectory can be
represented more succinctly as a sequence of fragments, and an-
other interesting direction is to cluster the trajectories based on this
new representation.
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