
I/O-Efficient Algorithms for Computing Contours
on a Terrain ∗

Pankaj K. Agarwal
Duke University

Durham, NC
pankaj@cs.duke.edu

Lars Arge
University of Aarhus

Aarhus, Denmark
large@daimi.au.dk

Thomas Mølhave
University of Aarhus

Aarhus, Denmark
thomasm@daimi.au.dk

Bardia Sadri
Duke University

Durham, NC
sadri@cs.duke.edu

ABSTRACT
A terrain M is the graph of a bivariate function. We as-
sume that M is represented as a triangulated surface with
N vertices. A contour (or isoline) of M is a connected com-
ponent of a level set of M. Generically, each contour is a
closed polygonal curve; at “critical” levels these curves may
touch each other or collapse to a point. We present I/O-
efficient algorithms for the following two problems related
to computing contours of M:

(i) Given a sequence `1 < · · · < `s of real numbers, we
present an I/O-optimal algorithm that reports all con-
tours of M at heights `1, . . . , `s using O(sort(N) +
T/B) I/Os, where T is the total number edges in the
output contours, B is the “block size,” and sort(N) is
the number of I/Os needed to sort N elements. The
algorithm uses O(N/B) disk blocks. Each contour
is generated individually with its composing segments
sorted in clockwise or counterclockwise order. More-
over, our algorithm generates information on how the
contours are nested.

(ii) We can preprocess M, using O(sort(N)) I/Os, into
a linear-size data structure so that all contours at a
given height can be reported using O(logB N + T/B)
I/Os, where T is the output size. Each contour is gen-
erated individually with its composing segments sorted
in clockwise or counterclockwise order.

∗The first and fourth authors are supported by NSF under
grants CNS-05-40347, CFF-06-35000, and DEB-04-25465,
by ARO grants W911NF-04-1-0278 and W911NF-07-1-0376,
by an NIH grant 1P50-GM-08183-01, by a DOE grant OEG-
P200A070505, and by a grant from the U.S.–Israel Bi-
national Science Foundation. The second and third au-
thors are supported in part by the US Army Research Of-
fice through grant W911NF-04-01-0278, by an Ole Roe-
mer Scholarship from the Danish National Science Research
Council, a NABIIT grant from the Danish Strategic Re-
search Council, and by the Danish National Research Foun-
dation, and in part by MADALGO: Center for Massive Data
Algorithmics, a Center of the Danish National Research
Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’08, June 9–11, 2008, College Park, Maryland, USA.
Copyright 2008 ACM 978-1-60558-071-5/08/04 ...$5.00.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations

General Terms
Algorithms, Theory

Keywords
terrains, contours, geographical information systems, I/O-
efficient algorithms

1. INTRODUCTION
Motivated by a wide range of applications, there is exten-

sive work in many research communities on modeling, an-
alyzing, and visualizing terrain data. A three-dimensional
(digital elevation) model of a terrain is often represented as a
two-dimensional uniform grid, with a height associated with
every grid point, or a triangulated xy-monotone surface; the
latter is also known as triangulated irregular network (TIN).
A contour (or isoline) of a terrain M is a connected com-
ponent of a level set of M. Contour maps (aka topographic
maps), consisting of contour lines at regular height intervals,
are widely used to visualize a terrain and to compute certain
topographic information of a map; this representation goes
back to at least the eighteenth century [19]. In this paper
we propose efficient algorithms for computing contour maps
and computing contours at a given level.

With the recent advances in mapping technologies, such
as laser based LIDAR technology, hundreds of millions of
points on a terrain, at sub-meter resolution with very high
accuracy (∼10-15 cm), can be acquired in a short period of
time. The terrain models generated from these data sets are
too large to fit in main memory and thus reside on disks.
Transfer of data between disk and main memory is often
the bottleneck in the efficiency of algorithms for processing
these massive terrain models (see e.g. [12]). We are there-
fore interested in developing efficient algorithms in the two-
level I/O-model [3]. In this model, the machine consists of
a main memory of size M and an infinite-size disk. A block
of B consecutive elements can be transferred between main
memory and disk in one I/O operation (or simply I/O). Com-
putation can only take place on elements in main memory,
and the complexity of an algorithm is measured in terms of
the number of I/Os it performs. Over the last two decades,
I/O-efficient algorithms and data structures have been de-
veloped for several fundamental problems, including sort-
ing, graph problems, geometric problems, and terrain mod-



(a) (b)

Figure 1: Examples of equidistant contour lines of a ter-
rain. (a) Rendered on a perspective view of the terrain in
3d. (b) Projected onto the 2d plane.

eling and analysis problems. See the recent surveys [4, 23]
for a comprehensive review of I/O-efficient algorithms. Here

we mention that sorting N elements takes Θ
“
N
B

logM/B
N
B

”
I/Os, and we denote this quantity by sort(N).

Related work. A natural way of computing a contour
K of a terrain M is simply to start at one triangle of M
intersecting the contour and then tracing out K by walking
through M until we reach the starting point. If we have
a starting point for each contour of a level set of M, for
a given level `, we can compute all contours of that level
set in linear time in the internal-memory model. The so-
called contour tree [9] encodes a “seed” for each contour of
K. Many efficient internal-memory algorithms are known
for computing a contour tree; see e.g. [9]. Hence, one can
efficiently construct a contour map of K. This approach of
tracing a contour has been extended to higher dimensions
as well, e.g., the well-known marching-cube algorithm for
computing iso-surfaces [16].

An O(sort(N)) algorithm in the I/O-model was recently
proposed by Agarwal et al. [2] for constructing a contour
tree of M, so one can quickly compute a starting point for
each contour. However, it is not clear how to trace a contour
efficiently in the I/O-model, since a naive implementation re-
quires O(T ) instead of O(T/B) I/Os, to trace a contour of
size T . Even using a provable optimal scheme for blocking
a planar (bounded degree) graph, so that any path can be
traversed I/O-efficiently [1, 17], one can only hope for an
O(T/ log2B) I/O solution. Nevertheless, I/O-efficient algo-
rithms have been developed for computing contours on a
terrain. Chiang and Silva [11] designed a linear-size data
structure for storing a TIN terrain M on disk such that all
T edges in the contours at a query level ` can be reported
in O(logB N +T/B) I/Os, but their algorithm does not sort
the edges along each contour. Agarwal et al. [1] designed a
data structure with the same bounds so that each contour at
level ` can be reported individually, with its edges sorted in
either clockwise or counterclockwise order. However, while
the space and query bounds of these structures are optimal,
preprocessing them takes O(N logB N) I/Os. This bound is
more than a factor of B away from the desired O(sort(N))
bound. Thus using this structure one can at best hope for
an O(N logB N +T/B) I/O algorithm to compute a contour
map; here T is the total size of all the output contours. We
refer the reader to the tutorial [18] and references therein for
a review of practical algorithms for contour and iso-surface
extraction problems, and to [12, 15] for a sample of I/O-
efficient algorithms for problems arising in terrain modeling
and analysis.

Our results. Let M be a terrain represented as a trian-
gulated surface (TIN) with N vertices. For a contour K
of M, let F (K) denote the set of triangles intersecting K.
We prove (in Section 3) that there exists a total ordering
2 on the triangles of M that has the following two crucial
properties:

(C1) For any contour K, if we visit the triangles of F (K) in
2 order, we visit them along K in either clockwise or
counter clockwise order.

(C2) For any two contours K1 and K2 on the same level
set of M, F (K1) and F (K2) are not interleaved in
2 ordering, i.e., suppose the first triangle of F (K1)
in 2 appears before that of F (K2), then either all of
the triangles in F (K1) appear before F (K2) in 2, or
all triangles of F (K2) appear between two consecutive
triangles of F (K1) in 2.

We call such an ordering a level-ordering of the triangles of
M. We show that 2 can be computed using O(sort(N))
I/Os. Next, we present two algorithms that rely on this
ordering.

Computing a contour map. Given as input a sorted list
`1 < · · · < `s of levels in R, we present an algorithm
(Section 4) that reports all contours of a M at levels
`1, . . . , `s using O(sort(N) + T/B) I/Os and O(N/B)
blocks of space, where T is the total number of edges
in the output contours. Each contour is generated in-
dividually with its edges sorted in clockwise or coun-
terclockwise order. Moreover, our algorithm reports
how the contours are nested; see Section 4 for details.

Answering a contour query. We can preprocess M, us-
ing O(sort(N)) I/Os, into a linear-size data structure
so that all contours at a given level can be reported
using O(logB N + T/B) I/Os, where T is the output
size. Each contour is generated individually with its
edges sorted in clockwise or counterclockwise order
(Section 4.4).

2. PRELIMINARIES
Let M = (V,E, F ) be a triangulation of R2, with vertex,

edge, and face (triangle) sets V , E, and F , respectively. We
assume that V contains a vertex v∞, set at infinity, and
that each edge {u, v∞} is a ray emanating from u. The
triangles in M incident to v∞ are unbounded. Let h : R2 →
R be a continuous height function with the property that
the restriction of h to each triangle of M is a linear map.
Given M and h, the graph of h is a terrain. It is represented
as an xy-monotone triangulated surface whose triangulation
is induced by M. That is, vertices, edges, and faces of M
are in one-to-one correspondence with those of M and with
a slight abuse of terminology we refer to V , E, and F , as
vertices, edges, and triangles of both the terrain M and the
triangulation M.

For convenience we assume that h(u) 6= h(v) for all ver-
tices u 6= v, and that h(v∞) = −∞. Within each bounded
triangle f ∈ F , h is uniquely determined as the linear in-
terpolation of the height of the vertices of f . This is not
the case for an unbounded face f since interpolation using
h(v∞) = −∞ is undefined; in which case to determine h on
f an extra parameter, such as the height of a point in f , is
needed.



regular minimum saddle maximum

Figure 2: Link of a vertex; lower link is depicted by filled
circles and bold edges. The type of a vertex is determined
by its lower link.

For a given terrain M and a level ` ∈ R, the `-level set of
M, denoted by M`, is defined as h−1(`) =

˘
x ∈ R2 | h(x) =

`
¯

. Equivalently, M` is the vertical projection of M ∩ z` on
the xy-plane, where z` is the horizontal plane z = `. The
closed `-sublevel and `-superlevel sets of M are defined re-
spectively as M≤` = h−1((−∞, `]) and M≥` = h−1([`,+∞)),
and the open `-sublevel and `-superlevel sets M<` and M>`

are M≤` \M` and M≥` \M`, respectively.
In much of what follows the height function of a terrain

M is only referred to for determining which endpoints of an
edge of M has greater height. We therefore“orient”each edge
of M toward its higher endpoint. Thus in the sequel, we treat
M as a directed triangulation and replace each undirected
edge {u, v} ∈ E with the ordered pair (u, v), if h(u) < h(v),
or with (v, u) otherwise.

The dual graph M∗ = (F ∗, E∗, V ∗) of the triangulation
M is defined as the planar graph that has a vertex f∗ ∈ F ∗
for each face f ∈ F , called the dual of f . There is an edge
e∗ = (f∗1 , f

∗
2 ) ∈ E∗ if and only if the the faces f1, f2 ∈ F

share an edge e = (u, v) and f1 is on the left and f2 on the
right side of the directed edge e. The graph M∗ is naturally
embedded in the plane as follows: the vertex f∗ is placed
inside the face f and e∗ is is drawn as a curve that crosses e
but no other edges of M. A vertex v ∈ V leads to a dual face
v∗ in M∗ that is bounded by the duals of the edges incident
to v. The dual of M∗ is M itself. For a given subset V0 of
V , we use the notation V ∗0 to refer to the set of duals to the
vertices in V0, i.e., V ∗0 = {v∗ : v ∈ V0}. A similar notation
is also used for sets of edges or faces.

Links and critical points. For a vertex v of M, the link of
v, denoted by Lk(v), is the cycle in M consisting of vertices
adjacent to v, as joined by edges from triangles incident to
v. The lower link of v, Lk−(v), is the subgraph of Lk(v)
induced by vertices lower (with smaller height) than v. The
upper link of v, Lk+(v) is defined analogously; see Figure 2.

As we vary the height `, the topology of M≤` changes at
a discrete set {`1, . . . , `m} of values, called the critical levels
of h, where each `i is h(vi) for some vertex vi ∈ V . The
subset {v1, . . . , vm} of V is the set of critical vertices of M.
A non-critical level of h is also called regular. Vertices with
regular heights are regular vertices. By our assumption that
the height of every vertex is distinct, there is only one critical
vertex for each critical level.

There are three types of critical vertices: minima, sad-
dles, and maxima. The type of a vertex v can be determined
from the topology of Lk−(v): v is minimum, regular, sad-
dle, or maximum if Lk−(v) is empty, a path, two or more
paths, or a cycle, respectively. We assume that each saddle
is simple meaning that its lower link consists of only two
paths. Multifold saddles can be split into simple saddles
(e.g. [2]). Equivalently, a vertex can be classified based on
the clockwise ordering of its incoming and outgoing edges:

Figure 3: Red and blue contours in a level-set of a terrain.

a minimum has no incoming edges, and a maximum has no
outgoing edges. For other vertices v, we count the number
of times incident edges switch between incoming to outgoing
as we scan them around v in clockwise order. This number
is always even. Two switches indicate a regular vertex, and
four or more switches indicate a saddle.

A saddle vertex is further classified into two types. Let
v be a saddle vertex, and let ` = h(v). The topology of
M≤` differs from that of M<` in one of two possible ways:
either two connected components of M<` join at v to become
the same connected component in M≤`, or the boundary
of the same connected component of M<` “pinches” at v
introducing one more “hole” in M≤`. Saddles of the former
type are called negative and the latter type positive saddles.
It is well-known that the number of minima (resp. maxima)
is one more than the number of negative (resp. positive)
saddles, and therefore

#saddles = #minima + #maxima− 2. (1)

This classification of saddles is related to persistent homol-
ogy and a more general statement is proved in [13].

Contours. A contour of a terrain M is a connected compo-
nent of a level set of M. Each contour K at a regular level is
a simple cycle. K partitions R2 \K into two open sets — a
bounded one called inside of K and denoted by K i, and an
unbounded one called outside of K and denoted by Ko. This
is violated at critical levels at which a contour may shrink
into a point (an extremum), or two contours may touch at a
single point (a saddle). As the level ` changes from −∞ to
+∞, contours in M` change continuously except at critical
levels where the contours containing the critical point un-
dergo topological changes. Let K1 and K2 be two contours
at levels `1 and `2 respectively with `1 < `2. We regard
K1 and K2 as “the same” if K1 continuously deforms into
K2 without any topological changes, as we sweep M in the
interval [`1, `2].

Following [1], we call a contour K in M` blue if, “locally”,
M<` lies in K i, and red otherwise; see Figure 3. Every blue
contour is born as a single point at a minimum. Conversely,
a blue contour is born at every minimum except at v∞.
Because of being placed at infinity, a red contour is born at
v∞. Likewise, red contours “die” by shrinking into a single
point at a maximum, and some red contour dies at every
maximum. Two contours, with at least one of them being
blue, merge into the same contour at a negative saddle. The
resulting contour is red if one of the merging contours is red,
and blue otherwise. A contour splits into two contours at a



(a) (b)

Figure 4: (a) Orientation of the edges in the plane trian-
gulation M of a terrain. Critical points and a contour K in
a regular level set are shown. (b) the dual M∗ of M. The
representing cycle of K in M∗ is shown with bold edges.
Triangles in C(K,M) are shaded.

positive saddle. A red contour splits into two red contours
while a blue contour splits into one red and one blue contour.

Two contours Ki and Kj of a level set M` are called neigh-
bors if no other contour K of M` separates them, i.e., one of
Ki and Kj is contained in K i and the other in Ko. If Ki is
neighbor to Kj and Ki ⊂ K i

j , then Ki is called a child of Kj .
If Ki ⊂ Ko

j and Kj ⊂ Ko
i then Ki is called a s siblings of

Kj . It can be verified that all children of a red (resp. blue)
contour are blue (resp. red) contours while all siblings of a
red (resp. blue) contour are red (resp. blue) contours.

We conclude this section by making a key observation,
which is crucial for our main result. A contour of M corre-
sponds to a cycle in M∗: let K be a contour in an arbitrary
level set M`, and let F (K) (resp. E(K)) denote the set of
faces (resp. edges) of M that intersect K. If K is a red (resp.
blue) contour, all the edges in E(K) are oriented toward K i

(resp. Ko). Consequently, the vertices in F ∗(K) are linked
by the edges in E∗(K) into a cycle in M∗. We refer to this
cycle as representing cycle of K. We use C(K,M) to de-
note the circular sequence of triangles dual to the represent-
ing cycle of K in M. The sequence in C(K,M) is oriented
clockwise (resp. counterclockwise) if K is red (reps. blue).

3. LEVEL-ORDERING OF TRIANGLES
In this section we present our main result — the exis-

tence of a level-ordering of triangles of any terrain M, i.e.,
an ordering that satisfies conditions (C1) and (C2). We be-
gin by proving the existence of a level-ordering for a simple
terrains, i.e., a terrain that does not have saddle vertices.
Next we prove certain structural properties of a terrain and
show that any arbitrary terrain can be transformed into a
simple terrain by performing a surgery so that the contours
of the original terrain are “preserved”. We then argue that
a level-ordering on the transformed terrain corresponds to a
level-ordering on the original one.

3.1 Simple terrain
Let M be a simple terrain. The above discussion and (1)

imply that M has one (global) minimum, v̌, which coincides
with v∞, and one (global) maximum, v̂, and that every level
set consists of a single red contour that shrinks to a point
at v̂.

Lemma 3.1. Let P ⊂ E be a directed (monotone) path in
M from v̌ to v̂. Then every cycle of M∗ contains exactly

one edge from P ∗. In particular, the graph M∗ \P ∗ obtained
from deleting the edges in P ∗ from M∗ is acyclic.

Proof. We claim that v̂ is reachable in M from every
vertex v ∈ V . Recall that v̂ is the only local maximum in M
and that every other vertex has at least one outgoing edge.
If one starts at v and follows an arbitrary outgoing edge at
each step, the height of the new vertex is greater than the
that of the previous one. This process can only stop at v̂.
By a similar argument, every vertex v ∈ V is reachable from
v̌.

Consider an arbitrary cycle C∗ in M∗. In the plane draw-
ing of M∗, C∗ is a Jordan curve. Let V0 ⊂ V be the set of
vertices that are contained in the inside of C∗ (equivalently,
V ∗0 ⊂ V ∗ is the set of faces of M∗ whose union is bounded
by C∗). Let C ⊂ E be the set of edges in M dual to those in
C∗. Since C∗ is a cycle, the edges in C are either all oriented
from V0 to V \ V0 or all from V \ V0 to V0.

The former case cannot happen because v∞ 6∈ V0 and
every vertex in V is reachable from v∞. If all edges of C are
oriented from V \ V0 to V0, then v̂ ∈ V0 because otherwise
v̂ cannot be reachable from the vertices of V0. Since v̂ ∈ V0

and v∞ ∈ V \ V0, |P ∩ C| ≥ 1. There is no edge directed
from V0 to V \V0, so once P reaches a vertex of V0 it cannot
leave V0, implying that |P ∩ C| = 1. Every cycle of M∗ is
destroyed by the removal of the edges in P ∗, implying that
M∗ \ P ∗ is acyclic.

Let P be the path from v̌ to v̂ as defined in Lemma 3.1.
The graph M∗ \P ∗ has all of the vertices of M∗. Thus every
face f of M is represented by f∗ in M∗ \ P ∗. Let ≺ be the
a binary relation on F (triangles in M) defined as f1 ≺ f2 if
(f∗1 , f

∗
2 ) ∈ E∗\P ∗. Since by Lemma 3.1 M∗\P ∗ is acyclic, ≺

is a partial order on F . We call ≺ the adjacency partial order
induced by the acyclic graph M∗ \ P ∗. A linear extension
of ≺ is any total order 2 on F that is consistent with ≺,
i.e. f1 ≺ f2 implies f1 2 f2. Such a linear extension can be
obtained by topological sorting of M∗ \ P ∗. By definition,
the existence of a directed path from f∗i to f∗j in M∗ \ P ∗
implies that fi 2 fj . This immediately results the following
statement.

Corollary 3.2. Let M be a simple terrain, and let P
be a directed (monotone) path from v̌ to v̂ in M. Let 2 be
a linear extension of the adjacency partial order induced by
M∗ \ P ∗. Then 2 is a level-ordering of the triangles of M.

3.2 Red and blue cut-trees
Consider now a non-simple terrain with saddle vertices.

Let S⊕ and S	 be the sets of positive and negative saddles of
M, respectively. We first introduce the notions of ascending
(red) and descending (blue) cut-trees of M as subgraphs of
the triangulation M, which we later use to turn M into a
simple terrain M̃. Contours of each level set of M will then
be encoded in a corresponding level set of M̃, each of which
is a single contour.

A descending (resp. ascending) path on M from a vertex
v ∈ V is a path v0, v1, . . . , vr where v0 = v and h(vi) <
h(vi−1) (resp. h(vi) > h(vi−1)) for i = 1, . . . , r. For each
negative saddle v, let P1(v) = u0, u1, . . . , ur and P2(v) =
w0, . . . , ws be two descending paths from v such that ur
and ws are both minima and u1 and w1 belong to different
connected components of Lk−(v). Furthermore assume that
for any two negative saddles u and w, if Pi(u) = u0, . . . , ur



and Pj(w) = w0, . . . , ws, for some i, j ∈ {1, 2}, and uk = wl
for some 1 ≤ k ≤ r and 1 ≤ l ≤ s, then uk+1 = wl+1,
in other words, we assume descending paths from different
vertices can join but then cannot diverge. Such a set of
paths always exist: one can assign such paths to negative
saddles in increasing order of their heights. At any negative
saddle u, we follow a descending paths through each of the
two connected components of Lk−(u) until it either reaches a
minimum or joins a path already assigned to a lower negative
saddle. Let P (u) = P1(u)∪P2(u) for any negative saddle u.
Since P1(u) \ {u} and P2(u) \ {u} are contained in different
connected components of M<h(u), the underlying undirected
graph of P (u) is a simple path. For a positive saddle u, P1(u)
and P2(u) are defined similarly using ascending paths that
start at different connected components of Lk+(u) and end
in maxima.

We define the descending (blue) cut-tree Ť = (V̌ , Ě) of
M to be ∪u∈S	P (u), and the ascending (red) cut-tree of

T̂ = (V̂ , Ê) to be ∪u∈S⊕P (u). It is, of course, not clear that

Ť and T̂ are trees but this and some of their other properties
are proven below.
Remark. The definitions of red and blue cut-trees are
closely related to notions of split and join trees in the con-
text of contour tree [21]. In fact, if join and split trees are
subgraphs of the terrain triangulation, they can replace the
red and blue cut-trees. However, this is not always the case.

Lemma 3.3. The underlying undirected graph of a blue
(resp. red) cut-tree Ť (resp. T̂) has no cycles.

Proof. We prove the claims for blue cut-tree. The ar-
gument for red cut-tree can be made symmetrically. Let
u1, . . . , ur be the list of all negative saddles of M in increas-
ing order of height. Let Ť0 be the empty graph and for
each i = 1, . . . , r, let Ťi = ∪ij=1P (uj); Ťi−1 is a subgraph

of Ťi, and Ťr = Ť. We prove by induction on i that each
Ťi is a forest. The empty graph Ť0 is trivially a forest.
Assume now that Ťi is a forest. By construction, adding
P (ui+1) connects two distinct connected components of Ťi,
each contained in one of the two connected components of
M<h(ui+1) that join at ui+1.

Moreover, once P1(ui+1) (or P2(ui+1)) meets a vertex of
Ťi, it follows a path of Ťi, therefore it does not create a cycle
within a component of Ťi.

For a set U ⊆ R2, let Ť(U) (resp. T̂(U)) be the union
of the paths P (u) for all negative (resp. positive) saddles

u ∈ U . In particular, Ť = Ť(R2) and T̂ = T̂(R2).

Lemma 3.4. For a blue (resp. red) contour K, the under-
lying undirected graph Ť(Ki) (resp. Ť(Ko)) connects all of
the minima in Ki (resp. Ko). A symmetric statement can

be made for T̂ and maxima by switching “red” and “blue”.

Proof. We prove the lemma for T̂ and blue contours.
The other cases are similar. Let K be a blue contour in
Mλ for some λ ∈ R. We show that for each ` ∈ R, the
minima in each connected component of U` = M<` ∩ K i

are connected by Ť(U`). The statement of the lemma then
follows by taking ` to be larger than the height of all vertices
in K i.

To prove the lemma we sweep ` from −∞ toward +∞ and
verify the claim for U`. Every time ` reaches the height of a
minimum in K i, a new connected component is added to U`.

Figure 5: Cutting a triangulation along a tree.

The lemma holds for this new component since it originally
has only a single minimum which is vacuously connected
by Ť(U`) to every other minimum in that component. The
validity of the claim as ` continues to raise can only be al-
tered when ` reaches the height of a negative saddle u in K i

at which two connected components U1 and U2 of U<`, for
` = h(u), join at u. At this time the path P (u) is added
to Ť(U`). The crucial observation here is that because K
is a blue contour, no descending path started at a vertex
u ∈ K i can reach Ko. Thus the endpoints of P (u) have
to be minima in K i. In other words P (u), which reaches
a minimum in U1 and another in U2, connects Ť(U1) and
Ť(U2) as desired.

Corollary 3.5. The underlying undirected graphs of Ť
and T̂ are trees. Moreover, all minima are vertices of Ť and
all maxima are vertices of T̂.

We conclude this discussion by mentioning a property of
T̂ and Ť that follows from the construction.

Lemma 3.6. Let u be a vertex of T̂ (resp. Ť). If u is
a positive (resp. negative) saddle, then u has two outgoing

(resp. incoming) edges in T̂ (resp. Ť) — one to each con-
nected component of the upper (resp. lower) link of u in M.
If u is a regular vertex or a negative saddle, then u has one
outgoing (resp. incoming) edge. Finally, if u is a maximum
(resp, minimum), then it has no outgoing (resp. incoming)
edges.

3.3 Surgery on terrain
Let T̂ be a red cut-tree for M. Consider the following com-

binatorial operation on M. First we duplicate every edge e of
T̂, thus creating a face fe that is bounded by the two copies
of e. We then perform an Eulerian tour on the subgraph of
M induced by the copies of the edges of T̂ in which at each
vertex the next edge of the tour is the first unvisited edge
of the subgraph in clockwise order, relative to the previous
edge of the tour. We then combine all of the faces fe into a
single face f̂ that is bounded by the Eulerian tour by making
as many copy of each vertex as its degree in T̂ (or equiva-
lently the number of times the tour has passed through it)
and connecting non-tree edges incident on u to appropriate
copies of u; see Figure 5. Geometrically, the above mod-
ification of the terrain triangulation can be interpreted as
“puncturing” the plane, thus creating a single hole in it, by
cutting it along the edges of T̂. One can think of the created
hole as the new face f̂ in this modified triangulation that is
bounded by the 2|Ê| edges in the Euler tour.

We then subdivide f̂ by placing a new vertex v̂ inside it
and connecting v̂ via incoming edges (u, v̂) to every vertex

u on the boundary of f̂ . The result is a triangulation M0 =
(V0, E0, F0); see Figures 6 (a) and (b). The newly added
triangles are all incident to v̂, and we refer to them as v̂-
triangles. The edge e opposite to v̂ in a v̂-triangle f (which



is a copy of a T̂ edge) is called the base of f and f is said to
be based at e. One can modify the plane drawing of M into
a (singular) plane drawing of M0, that has faces of zero area
and edges that bend overlap, by jamming all the new faces
and edges in the (zero-area) hole that results from cutting

the plane through T̂.
M0 can be regarded as the triangulation of a terrain M0:

Fáry’s theorem [14] can be used to straight-line embed M0

while preserving all its faces and the height function of M
induces a height function on triangles of M0 that are also
in M. The height of v̂ is then set higher than all vertices of
M and is used to linearly interpolate a height function on
v̂-triangles.

Lemma 3.7. M0 has no positive saddles and exactly one
maximum, namely v̂. The minima of M0 are precisely those
of M. Each negative saddle of M0 is a copy of a negative
saddle of M, and only one copy of each negative saddle of
M is a negative saddle of M0.

Proof. For a vertex u 6∈ T̂, Lk(u) in M and M0 is the

same modulo taking copies of T̂ vertices as identical. In par-
ticular, minima of M stay minima in M0. Thus it suffices
to consider v̂ and copies of T̂ vertices. Clearly, v̂ is a maxi-
mum. Let u be a vertex of T̂, and let u′ be a copy of u in
M0. Let e′1 and e′2 be copies of T̂ edges that enter and leave
u′, respectively, in the Eulerian tour of T̂. Both of these
edges remain incident on u′ in M0. Let v′1 and v′2 be other
endpoints of e′1 and e′2, respectively in M0. Let vi and ei,
i = 1, 2, be the vertex and edge in M corresponding to v′i
and e′i, respectively. Lk(u′) consists of a path π(u′) from v′1
to v′2 followed by v̂. Moreover, e′1 and e′2 are the only edges
incident on u′ that are copies of T̂ edges, and π(u′) is also

a path in Lk(u) in M, modulo taking copies of T̂ vertices as
identical.

First, u′ cannot be a maximum because u′ is adjacent to v̂.
It cannot be a minimum either because then π(u′) ⊆ Lk+(u)

and e1 and e2 are outgoing edges from u in T̂ connected to
some component of Lk+(u), which contradicts Lemma 3.6.
Next, if Lk+(u′) is not connected, then its component U not
containing v̂ does not contain v′1 and v′2 either and thus u lies
in the interior of the path π(u′). Then U is also a connected
component of Lk+(u) in M. Unless u is a negative saddle,

by Lemma 3.6, there is an outgoing edge in T̂ from u to a
vertex in U , contradicting the fact that e′1 and e′2 are the
only edges adjacent to u′ that are copies of T̂ edges. Hence,
unless u is a negative saddle, Lk+(u′) is connected and u′ is
a regular vertex in M0.

Finally, suppose u is a negative saddle, with two compo-
nents U1 and U2 in Lk+(u). By Lemma 3.6, u has exactly

one outgoing edge e in T̂. Without loss of generality as-
sume that e is connected to U1. Then U2 will appear as a
connected component of the upper link of exactly one copy
u′ of u, namely if U ⊆ π(u′), and u′ will be a negative
saddle in M0. The upper link of all other copies of u will
be connected — consisting of v̂ and possibly a portion of
U1. Consequently, one copy of every negative saddle in M
becomes a negative saddle in M0 and other copies become
regular vertices. This completes the proof of the lemma.

Next we perform a similar surgery on M0 only using a red
cut-tree Ť of M0. As above, the idea is to slice the plane at
Ť and insert a new vertex v̌ in the resulting face and connect
v̌ to every copy u of a vertex in Ť by an outgoing edge (v̌, u).

We call the resulting triangulation M̃ = (Ṽ , Ẽ, F̃ ). A slight
technicality arises in this case as a result of the fact that v∞
is a minimum of M0 which by Corollary 3.5 is a vertex of
Ť. We omit the details from this version and conclude using
the same argument as in Lemma 3.7, the following:

Lemma 3.8. M̃ does not have saddle vertices.

Lemma 3.9. If (f∗1 , f
∗
2 ) is an edge of M∗, then there is a

path from f∗1 to f∗2 in M̃∗.

Proof. If f1 and f2 are adjacent in M̃ then (f∗1 , f
∗
2 ) is an

edge in M̃∗. Thus we only need to consider the case in which
and edge e shared by f1 and f2 in M is an edge of T̂ or Ť
(or both). Suppose e is an edge of T̂. In constructing M0,
e is duplicated to create two edges e1 and e2, respectively,
incident to f1 and f2. Let φ1 and φ2 respectively be the
v̂-triangles based at e1 and e2. By construction, f1 is to the
left and φ1 to the right of e1 and therefore (f∗1 , φ

∗
1) is an

edge in M̃∗. Similarly (φ∗2, f
∗
2 ) are edges in M̃∗. Consider

the subgraph of M̃∗ induced by v̂-triangles. Since all the
edges incident to v̂ are incoming, their duals make a cycle
in M̃∗ which includes φ∗1 and φ∗2. Since there is a path from
φ∗1 to φ∗2 on this cycle and there are edges from f∗1 to θ∗1 and
from θ∗2 to f∗2 in M̃∗, we get a path from f∗1 to f∗2 . It is easy
to observe that the same argument extends to neighboring
M triangles that are separated by the edges of Ť or both T̂
and Ť.

3.4 Encoding of contours in simplified terrain
Although we argued above that M̃ can be realized as the

triangulation of a terrain M̃, in what follows we use a degen-
erate realization of it that is different from what a straight-
line embedding of M̃ results and substantially simplifies the
arguments of the rest of this section. Given a terrain M, we
surgically modify the surface it represents in R3 as follows.
The graph of the restriction of the height function h of M
to the red cut-tree T̂ of M is a tree T̂ embedded on M (and

therefore in R3). We cut M along T̂ and represent each edge

(u, v̂) of M̃ (where u is a copy of a T̂ vertex) as a vertical
ray in R3 (parallel to the z-axis) that emanates from the

vertex of T̂ corresponding to u in the positive direction of
the z-axis. In other words, we take v̂ to be at infinity in the
positive z-direction. A v̂-triangle based at an edge (u,w)

(where (u,w) is a copy of a T̂ edge) is then represented by
a vertical wall erected on top of the edge corresponding to
e in M that extends to +∞ and is bounded at its vertical
sides by the vertical rays that represents (u, v̂) and (w, v̂);
see Figure 7. We then cut the resulting surface along a blue
cut-tree of it and carry out a similar construction for the
edges and triangles incident to v̌, only this time the rays
and walls extend toward −∞. We call the final surface M̃.
Note that although M̃ is topologically a triangulated surface
whose triangulation has the same combinatorial structure as
M̃ (modulo taking all vertical edges and triangles that go to
+∞ or −∞ as being incident to v̂ or v̌ respectively), after
cutting M along the cut-trees all the copies of each vertex of
the tree still reside at the same point in R3. Thus the verti-
cal rays and walls that represent edges or triangles based at
different copies of the same cut-tree vertices or edges over-
lap.

The surface M̃ is not xy-monotone and therefore violates
our definition of a terrain. All points on rays and vertical



(a) (b) (c)

Figure 6: (a) A red (ascending) cut-tree marked T̂ marked on the terrain M of Figure 4. (b) Construction of the graph M0:

the terrain is cut along T̂ and a new maximum v̂ is inserted in the opened face. On the right, a blue cut-tree of M0 is marked.
(c) Construction of the graph M̃: the terrain is cut open on the red cut-tree and a new maximum is inserted.

triangles based at copies of T̂ vertices and edges vertically
project into T̂ and a similar statement holds for Ť. It is
nonetheless possible to define the `-level sets M̃` of M̃ in the
same way as they are defined for xy-monotone surfaces as
the vertical projection into xy-lane of M̃∩ z`. On the other
hand, all the triangles of M are also in M̃ and correspond
to the same triangles of M and M̃ in R3. This implies that
M` ⊆ M̃` for all ` ∈ R and M̃` \ M` ⊂ T̂ ∪ Ť. In other

words M̃` consists of the contours of M` connected to each
other by pieces of red and blue trees. Let T̂` = T̂ ∩ M̃` and
Ť` = Ť ∩ M̃`.

Lemma 3.10. Let K0 be a blue (resp. red) contour in
a level set M` and let K1, . . . ,Kr be its children. Then
K0,K1, . . . ,Kr are connected to each other in M̃` only through
paths in T̂` (resp. Ť`). Moreover, if G0 is defined as a

graph that results from the restriction of T̂ (resp. Ť) to
Ki

0 \ (Ki
1 ∪ · · · ∪ Ki

r) by contracting each contour Ki into
a vertex, i = 0, . . . , r, then G0 is a tree. The statement of
the lemma is also valid for the outermost contours that do
not have a parent.

Proof. We prove the lemma for the case where K0 is
blue. The proof for the case where it is red is symmetric.
For the first claim, observe that the subset S of the plane
defined as K i

0 \ (K i
1 ∪ · · · ∪K i

r) is contained in the sublevel
set M<`. Therefore vertical triangles that intersect S must
connect edges with at least one endpoint in M̃<` to v̂ and
are therefore v̂-triangles.

For the second part we prove a cycle in G0, implies a cycle
in the underlying graph of T̂ and this contradicts Corollary
3.5. Consider any contour Kj with j = 1, . . . , r and let e1
and e2 be two edges of T̂ that intersect Kj . Since Kj is
red, all edges crossing it have their higher endpoint in K i

j .

Since e1 is an edge of T̂, its higher endpoint is followed by an
ascending path that ends in a maximum. Since no ascending
path can leave K i

j , T̂ reaches a maximum v1 in K i
j through

e1. Similarly, T̂ reaches a maximum v2 in K i
j through e2.

One the other hand Lemma 3.4 implies that v1 and v2 are
connected by a path in T̂ contained in K i

j . In other words,

any two branches of T̂ that enter K i
j meet in K i

j . A similar

argument shows that any two branches of T̂ that enter Ko
0

meet in Ko
0 . Thus, a cycle in G0 implies a cycle in the

underlying undirected graph of T̂.

The nested structure of red and blue contours together
with Lemma 3.10 result the following statement.

Corollary 3.11. Let K1, . . . ,Kt be all of the contours
in M` and let G be the graph that results from T̂` ∪ Ť` by
contracting every contour Ki into a vertex. Then G is a
tree.

Since M̃ does not have saddles, M̃∗ \ P ∗ for a v̌-v̂ path P
is acyclic, by Lemma 3.1. Let ≺ be adjacency partial order
on F̃ induced by M̃∗ \ P ∗. Since F ⊂ F̃ , ≺ is also a partial
order on F .

Lemma 3.12. Let 2 be linear extension of ≺ on F . If K
and K′ are two contours of a level set M` and f1, f2 ∈ F (K)
and f ′, f

′
2 ∈ F (K′) are such that f1 2 f ′1 2 f2, then f1 2

f ′2 2 f2.

Proof. Since M̃ is a simple terrain, M̃` consists of a
single contour. Let C∗ = C(K,M∗) be the representing

cycle of M̃` in M̃∗. If f1, f2 ∈ F (K) for some contour K in
M` and the edge common to f1 and f2 does not belong to
either of T̂ or Ť, then (f∗1 , f

∗
2 ) is an edge in C∗. By Lemma

3.1, C∗ has exactly one edge in P ∗. Thus C∗ \ P ∗ is a path
Q∗ that is exactly one edge short of C∗.

If a v̂-triangle based at one copy of a T̂ edge e intersects the
plane z` in some segment, the v̂-triangle based at the other
copy of e does so as well in the same segment. Thus all the
segments in T̂` or Ť` correspond to two overlapping segments
in the contour M̃`. In other words M̃` is a closed curve that
connects contiguous fragments of individual contours that
are not crossed by the red or blue cut-trees with paths from
T̂` and Ť` in which M̃` overlaps itself “twofold”; see Figure
8. Let G be the tree of Corollary 3.11. Each contour Ki

appears as a vertex in G. Let K = K0, . . . ,Kr = K′ be
the sequence of vertices (contracted contours) visited in the
unique path in G that connects K to K′. By Lemma 3.10
for each i = 1, . . . , r, Ki−1 is connected to Ki by a unique
path in either Ť` or T̂`. Let s be an arbitrary segment from
either T̂` or Ť` on the unique path connecting K0 to K1.

For f1 2 f ′1 2 f2 to hold, Q∗ must visit f∗1 , f ′1
∗

and
f∗2 in this order. Assume without loss of generality that
f ′1 2 f ′2. In order for f1 2 f ′2 2 f2 not to hold, one must
have f2 2 f ′2) which means Q∗ must visit f ′2

∗
after f∗2 . But

this corresponds to going from K to K′, then back to K and
then again to K′. This corresponds to M̃` passing through
s three times, a contradiction.



Figure 7: Left: The red cut-tree T̂ of a terrain. Middle: The terrain is cut along T̂ and v̂-triangles are represented by vertical
walls. Right: A contour of the simplified terrain overlapping itself on v̂-triangles.

Figure 8: Contours of M` (left) versus those of M̃` (right).

Lemmas 3.9 and 3.12 respectively prove that the total
order 2 has properties (C1) and (C2) of a level-ordering .

Theorem 3.13. For any terrain M with triangulation M,
there is exists a level level-ordering of the triangles of M.

4. CONTOUR ALGORITHMS
In this section we describe I/O-efficient algorithms for com-

puting contour maps as well as an I/O-efficient data structure
for answering contour queries.

4.1 Level-ordering of terrain triangles
We describe an I/O-efficient algorithm for computing the

triangulation M̃ of the simplified terrain M̃, and a monotone
path P from v̌ to v̂ in M̃. We can then computing a level-
ordering of triangles in M̃, which also gives a level-ordering
of triangles in M, by doing a topological sort on the vertices
of M̃∗ \ P ∗ in O(sort(N)) I/Os.

Computing the red cut-tree. The first in computing
M̃ is to compute a red (ascending) cut-tree T̂ of M. The
I/O-efficient topological persistence algorithm of Agarwal
et al. [2] can determine the type of every vertex of M in
O(sort(N)) I/Os. Moreover, for every vertex v ∈ M, it can
also compute, within the same I/O bound, a vertex from each
connected component of Lk+(v). Since each saddle of M is
assumed to be simple, Lk+(v) has at most two connected
components.

T̂ is computed using the time-forward processing technique
[10] and using a priority queue Q: we scan the vertices of M
in the increasing order of their heights. We store a subset
of vertices in Q, namely the upper endpoints of the edges of
T̂ whose lower endpoints have been scanned. The priority
of a vertex v in Q is its height h(v). Suppose we are scan-
ning a vertex v of M and u is the lowest priority vertex in
Q. If h(v) < h(u) and v is not a positive saddle, we move
to a new vertex in M. Otherwise, i.e. if h(u) = h(v) or v
is a positive saddle, we choose a vertex w from each con-
nected component of Lk+(v), which we have already com-
puted in the preprocessing step. We add the edge (v, w) to

T̂ and add w to Q. Since each operation on Q can be per-

formed in O
“

1
B

logM/B N/B
”

I/Os, T̂ can be computed in

O(sort(N)) I/Os.

Adding the blue cut-tree. The second step in computing
M̃ is to compute a blue cut-tree Ť of M0. However, we
can compute Ť directly on M if we ensure that T̂ and Ť
do not cross each other, even though they can share edges.
This property can be ensured by choosing the ascending and
descending edges, in T̂ and Ť, respectively, out of each vertex
v, more carefully. Specifically, we use the following rule:

1. On an ascending path, the edge following (u, v) is (v, w)
where (v, w) is the first outgoing edge out of v in clock-
wise order from (u, v), and

2. On a descending path, the edge following (v, u) is (w, v)
where (w, v) is the first incoming edge of v in counter-
clockwise order from (v, u),

It can be verified that T̂ and Ť do not cross. One can there-
fore compute Ť precisely in the same way as T̂ directly on
M.

Computing a monotone v̌-v̂ path P . While computing
Ť we also compute a descending path starting at the lowest
positive saddle v1 of M as though v1 were another negative
saddle. This path P , which ends at a Ť vertex v0, together
with (v̌, v0) and (v1, v̂) serves as a monotone path in M̃ con-
necting v̌ to v̂.

Generating M̃∗ \P ∗. The topological sorting algorithm by
Arge et al. [8] takes as input a planar directed acyclic graph,
represented as a list of vertices upon with the list of edges
incident upon them in circular order. Given M, T̂, Ť, and P ,
we need to compute such a representation of M̃∗ \P ∗. Since

each face in M̃ is a triangle, the degree of each vertex in M̃∗
is three. It is easy to compute the circular order of edges
incident upon a vertex of M̃∗ whose dual triangle is neither a
v̂- or v̌-triangle, nor adjacent to a copy of a T̂ or Ť edge. The
main task is then to compute the v̂- and v̌-triangles. This
can be accomplished by computing the Eulerian tours of T̂
and Ť, which takes O(sort(N)) I/Os [8]. Putting everything
together, we obtain the main result of this paper.

Theorem 4.1. Given a terrain M with triangulation M,
a level-ordering of the triangles of M can be computed in
O(sort(N)) I/Os, where N is the number of vertices of M.

4.2 Contour maps of simple terrains
Let L = {`1, . . . , `s} be a set of input levels with `1 <
· · · < `s. Given a simple terrain M, the goal is to compute
the contour map of M for levels in L. Since M is simple,
each M`i is a single contour. Generating the segments of



M`i in clockwise or counterclockwise order is equivalent to
listing the triangles of M, the contour M`i intersects in that
order, i.e. reporting C(M`,M).

Our algorithm uses a buffer tree B to store the terrain
triangles of M that intersect a level set. The buffer tree [5]
is a variant of a B-tree, which propagates updates from the
root to the leaves in a lazy manner, using buffers attached
to the internal nodes of the tree. As a result, a sequence of
N updates (inserts and deletes) can be performed in amor-
tized O(sort(N)) I/Os. Moreover, one can perform a flush
operation on a buffer tree that results in the writing of all
its stored elements on the disk in sorted order. Flushing a
tree with T elements takes O(T/B) I/Os. After the flush-
ing, only those triangles that intersect the sweeping plane
remain in B.

It is more intuitive to describe the algorithm as a plane
sweep of M in R3. At the first step, the algorithm computes
a level-ordering of the terrain triangles using Corollary 3.2.
Then starting at ` = −∞, the algorithm sweeps a horizontal
plane z` at height ` in the positive z-direction. A target level
`∗ is initially set to `1. At any time the algorithm maintains
a list of triangles in M that intersect the sweeping plane in
a buffer tree B ordered by 2. Whenever the sweep plane
encounters the bottom-most vertex of a triangle f of M,
we insert f into B; f is deleted again from B when the
plane reaches the top-most vertex of f . When the sweep
plane z` reaches the height of the target level `∗, it flushes
the buffer tree. The generated list of triangles (vertices of
M∗) are precisely the set of triangles in M that intersect the
horizontal plane z = `∗, ordered by 2. Corollary 3.2 implies
that the output is exactly C(M`∗ ,M). The algorithm then
raises the target level `∗ to the next level in L and continues.

Level-ordering the terrain triangles takesO(sort(N)) I/Os
(Theorem 4.1). Preprocessing for the sweep algorithm con-
sists of sorting the vertices in their increasing order of heights
which can also be done in O(sort(N)) I/Os. During the
sweep each update on the buffer tree takes O( 1

B
logM/B |N |)

amortized I/Os [5]. Thus all the O(N) updates can be per-
formed in O(sort(N)) I/Os in total. Each flushing operation
takes O(1 +T ′/B) I/Os, where T ′ is the number of triangles
in B. If a triangle is in B but has been deleted, it is not
in B after the flushing operation, so a “spurious” triangle is
flushed only once.

Hence, the total number of I/Os is O(sort(N) + T/B),
where T is the output size. Finally, in addition to storage
used for the terrain the algorithm uses O(N/B) blocks to
store the buffer tree and thus uses O(N/B) blocks in total.

4.3 Generalization to arbitrary terrains
Given a general terrain M with saddles, one can still com-

pute by Theorem 4.1 a level-ordering of the triangles of M
in O(sort(N)) I/Os. If one runs the algorithm of the previ-

ous section on M̃ the output generated for each input level
`i is C(M̃`i , M̃). Running the algorithm on M is equiva-

lent to running it on M̃ but ignoring all v̂ and v̌-triangles.
Consequently, the produced output for level `i is the same
sequence of triangles only with v̂ and v̌-triangles omitted.
By Theorem 3.13 this is a subsequence R = 〈f1, . . . , fk〉 of

the C(M̃`i , M̃)) in which C(K,M) of each contour K in M`i

appears as a subsequence RK . Thus all one needs to do is
to extract the subsequence RK and write it separately in
the same order as it appears in R. Property (C2) of a level-
ordering allows this to by done in O(k/B) I/Os: if in R some

elements of RK are later followed by elements of RK′ , then
the appearance of another element of RK , indicates that no
more elements from RK′ remain.

We scan the sequence R in order and push the scanned
triangles into a stack SF . Every time the last element of a
contour is pushed into the stack, the triangles of that con-
tour make a suffix of the list of elements stored in SF . At
such a point, we pop all the elements corresponding to the
completed contour and write them to disk. To recognize
when a contour is completed and how many elements on the
top of stack belong to it, we keep a second stack SE of edges.
For any triangle f ∈ F (M`i), two of the edges of f intersect
M`i . With respect to the orientation of these edges, f is
to the right of one of them and to the left of the other one
which we respectively call the left and right edges of f at
level `i. If e∗ = (f∗j , f

∗
j+1) is an edge of the representing

cycle of a contour in M`i , then e is the right edge of fj and
left edge fj+1 at level `i. We therefore check when scanning
a triangle fj whether its left edge is the same as the right
edge of the triangle on top of SF and insert fj into SF if
this is the case. Otherwise, we compare the left edge of fj
with the edge on top of SE . If they are not the same, we are
visiting a new contour and we insert the left edge of fj into
SE and fj into SF . Otherwise, fj is the last triangle of its
contour. Therefore we write it to the disk and successively
pop and write to disk enough triangles from SF until the left
edge of a popped triangle is the same as the right edge of
fj . We also pop this edge from SE . In this algorithm each
scanned triangle is pushed to the stack once and popped an-
other time. In a standard I/O-efficient stack implementation
this costs O(k/B) I/Os.

Theorem 4.2. Given any terrain M with N vertices and
a list L = {`1, . . . , `s} of real levels with `1 < · · · < `s, one
can compute using O(sort(N)+T/B) I/Os the contour map
of M for levels in L, where T is the total number of produced
segments.

Remark 4.3. In addition to reporting each contour indi-
vidually, a number of applications call for computing how
various contours are nested in each other. Let K be the
set of contours computed by the algorithm. We define a
tree N on K as follows: Recall that a contour tree of M
is a tree embedded in R3, each point of the tree is identi-
fied with one contour of M. By marking the points in the
contour tree that correspond to the contours in K as the
vertices and contracting some of the edges of the contour
tree, we can construct N. Using the I/O-efficient algorithm
by Agarwal et al. [2] for constructing contour trees, we can
construct N in O(sort(N)) I/Os. We omit the details from
this version.

4.4 Answering contour queries
The sweep algorithm described in the previous section can

easily be modified to construct a linear space data structure
that given a query level ` can report the contours in the level
set M` I/O-efficiently. Unlike the previously known structure
for this problem [1], our structure can be constructed in
O(sort(N)) I/Os. To obtain the structure we simply replace
the buffer tree B with a partially persistent B-tree [6, 22].
To build the structure, we sweep M by a horizontal plane
in the same way as we did in the algorithm of Section 4.2,
inserting the triangles when the sweep plane reaches their



bottom-most vertex without checking for them to intersect
any target levels and deleting them when the sweep plane
passes their top-most vertex. There will also be no need to
flush the tree.

Since O(N) updates can be performed on a persistent B-
tree in sort(N) I/Os [20, 7], the sweeping of the terrain
require O(sort(N)) I/Os. Since a persistent B-tree allows
us to query any previous version of the structure and in
particular produce the list of the elements stored in the tree
in O(logB N + T/B) I/Os if T is the number of reported
elements, we can now obtain M` in the same bound, sim-
ply by querying the structure for the triangles it contained
when the sweep-plane was at height ` and then utilize The-
orem 3.13 and the contour extraction algorithm discussed
above to extract individual contours of M`.

Theorem 4.4. Given a terrain M with N vertices, one
can construct in O(sort(N)) I/Os a linear size data struc-
ture, such that given a query level `, one can report contours
of M` in O(logB(N) +T/B)) I/Os where T is the size of the
query output. Each contour is reported individually, and the
edges of each contour are sorted in clockwise order.

5. CONCLUSIONS
We defined level-ordering of terrain triangles and proved

that every terrain has a level ordering that can be com-
puted I/O-efficiently. Based on this, we provided algorithms
that compute contours of a given terrain within similar I/O
bounds. An immediate question is whether this approach
can be generalized to general triangulated surfaces and ar-
bitrary piecewise functions defined on them. For such sur-
faces, one can in particular consider height functions in var-
ious direction: is it possible to preprocess a given triangu-
lated surface so that for any given direction, the contours
of the height function for that direction can be computed
I/O-efficiently?

6. REFERENCES
[1] P. K. Agarwal, L. Arge, T. M. Murali, K. R.

Varadarajan, and J. S. Vitter, I/O-efficient algorithms
for contour-line extraction and planar graph blocking,
Proc. 9th ACM-SIAM Sympos. Discrete Algorithms,
1998, pp. 117–126.

[2] P. K. Agarwal, L. Arge, and K. Yi, I/O-efficient
batched union-find and its applications to terrain
analysis, Proc. 22nd Annu. ACM Sympos. Comput.
Geom., 2006, pp. 167–176.

[3] A. Aggarwal and J. S. Vitter, The input/output
complexity of sorting and related problems, Commun.
ACM, 31 (1988), 1116–1127.

[4] L. Arge, External memory data structures, in:
Handbook of Massive Data Sets (J. Abello, P. M.
Pardalos, and M. G. C. Resende, eds.), Kluwer
Academic Publishers, 2002, pp. 313–358.

[5] L. Arge, The buffer tree: A technique for designing
batched external data structures, Algorithmica,
37 (2003), 1–24.

[6] L. Arge, A. Danner, and S.-H. Teh, I/O-efficient point
location using persistent B-trees, Proc. Workshop on
Algorithm Engineering and Experimentation, 2003.

[7] L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S.
Vitter, Efficient bulk operations on dynamic R-trees,
Algorithmica, 33 (2002), 104–128.

[8] L. Arge, L. Toma, and N. Zeh, I/O-efficient
topological sorting of planar dags, Proc. 15th Annu.
ACM Sympos. Parallel Algorithms and Architectures,
2003, pp. 85–93.

[9] H. Carr, J. Snoeyink, and U. Axen, Computing
contour trees in all dimensions, Computational
Geometry: Theory and Applications, 24 (2003), 75–94.

[10] Y.-J. Chiang, M. T. Goodrich, E. F. Grove,
R. Tamassia, D. E. Vengroff, and J. S. Vitter,
External-memory graph algorithms, Proc. 6th
ACM-SIAM Sympos. Discrete Algorithms, 1995,
pp. 139–149.

[11] Y.-J. Chiang and C. T. Silva, I/O optimal isosurface
extraction, Proc. IEEE Visualization, 1997,
pp. 293–300.

[12] A. Danner, T. Mølhave, K. Yi, P. K. Agarwal,
L. Arge, and H. Mitasova, TerraStream: From
elevation data to watershed hierarchies, Proc. ACM
Sympos. on Advances in Geographic Information
Systems, 2007, 212–219.

[13] H. Edelsbrunner, D. Letscher, and A. Zomorodian,
Topological persistence and simplification, Discrete
Comput. Geom., 28 (2002), pp. 511–533.

[14] I. Fáry, On straight lines representation of planar
graphs, Acta Sci. Math. Szeged, 11 (1948), 229–233.

[15] M. Isenburg, Y. Liu, J. Shewchuk, and J. Snoeyink,
Streaming computation of Delaunay triangulations,
Proc. of SIGGRAPH, 2006, pp. 1049–1056.

[16] W. Lorensen and H. Cline, Marching cubes: a high
resolution 3d surface construction algorithm, Comput.
Graph., 21 (1987), 163–170.

[17] M. H. Nodine, M. T. Goodrich, and J. S. Vitter,
Blocking for external graph searching, Algorithmica,
16 (1996), 181–214.

[18] C. Silva, Y. Chiang, J. El-Sana, and P. Lindstrom,
Out-of-core algorithms for scientific visualization and
computer graphics, Visualization’02, 2002. Course
Notes for Tutorial 4.

[19] R. A. Skelton, Cartography, History of Technology,
6 (1958), 612–614.

[20] J. van den Bercken, B. Seeger, and P. Widmayer, A
generic approach to bulk loading multidimensional
index structures, Proc. International Conference on
Very Large Databases, 1997, pp. 406–415.

[21] M. van Kreveld, R. van Oostrum, C. Bajaj,
V. Pascucci, and D. Schikore, Contour trees and small
seed sets for isosurface traversal, Proc. 13th Annu.
ACM Sympos. Comput. Geom., 1997, pp. 212–219.

[22] P. J. Varman and R. M. Verma, An efficient
multiversion access structure, IEEE Transactions on
Knowledge and Data Engineering, 9 (1997), 391–409.

[23] J. S. Vitter, External memory algorithms and data
structures: Dealing with MASSIVE data, ACM
Computing Surveys, 33 (2001), 209–271.


